Section Solutions
¶Sequences
-
Write the first five terms of the sequence in simplest form.
\(\dsp \frac{11}{3}, \frac{9}{3}, \frac{7}{3}, \frac{5}{3}, \dots\)
\(\dsp 1, \frac{\sqrt{2}}{2}, 0, \frac{-\sqrt{2}}{2}, -1, \dots\)
\(\dsp \frac{5}{2}, \frac{11}{4}, \frac{29}{8}, \dots\)
-
Write a formula for each sequence. I.e. \(x_n = \_\_\_\) for \(n = 1,2,3,\dots\text{.}\)
\(\dsp x_n = \frac{3n}{5^n} \cdots\)
\(\dsp (-1)^n \cdots\)
\(\dsp (-1)^{n+1} \frac{n}{n+1} \cdots\)
-
What is the least upper bound and the greatest lower bound? Prove it.
GLB = 0, LUB = 2
GLB = 2/3 , LUB = 9/7
-
Is the sequence monotonic or not? Prove it.
decreasing
not monotonic
increasing
-
Use limits to find whether or not the sequence converges.
converges to 0
converges to 1
converges to 0
converges to \(e^{-1}\)
N = 3001
N = the first positive integer larger than \(\dsp \frac{3}{2\epsilon}\)
Series
-
List, in simplest form, the first three partial sums for the series and write a formula for the \(N^{th}\) partial sum.
\(\dsp 1 , \frac{4}{3} , \frac{13}{9} , \frac{40}{27} , \dots, S_n= \frac{1-3^{n+1}}{1-3}\frac{1}{3^{n}} = \frac{1 - (\frac{1}{3})^{n+1}}{1-\frac{1}{3}}\)
\(\dsp 3 , 3\frac{6}{5} , 3\frac{31}{25} , \dots, S_n = 3 \frac{1-5^{n+1}}{(1-5)5^{n}}= 3\frac{1 - (\frac{1}{5})^{n+1}}{1-\frac{1}{5}}\)
-
What does the geometric series converge to?
1
9
\(\dsp \sum_{n=3}^\infty \frac{5}{3n} = \frac{5}{3} \sum_{n=3}^\infty \frac{1}{n} > \sum_{n=3}^\infty \frac{1}{n}\) which diverges
-
Apply the integral test to determine if the series converges.
converges
diverges
-
Determine if these series converge via one of the \(n^{th}\) term test, integral test, p-series test, comparison test, or limit comparison test.
converges by limit comparison with \(\dsp \frac{1}{n^2}\)
converges by limit comparison with \(\dsp \frac{1}{n^2}\)
diverges, \(n^{th}\) term test
converges, geometric series
diverges, \(n^{th}\) term test
separate the two series, one harmonic (diverges), one geometric (converges)
separate the two series, both geometric (converges)
separate the two series, one constant (diverges by \(n^th\) term test), one converges by integral or p-series test
limit comparison with \(\dsp \frac{1}{n^2}\)
converges, geometric series
limit comparison with \(\dsp \frac{1}{n^3}\)
limit comparison with \(\dsp \frac{1}{\sqrt{n}}\)
converges by limit comparison with \(\dsp \frac{1}{n^2}\)
converges by comparison to \(\dsp \frac{1}{n^2}\)
converges by limit comparison with \(\dsp \frac{1}{n}\)
converges by comparison to \(\dsp \frac{1}{n^2}\)
converges by comparison to \(\dsp \frac{1}{n^2}\)
converges by limit comparison with \(\dsp \frac{1}{3^n}\)
converges by comparison to \(\dsp \frac{1}{n^2}\)
converges, integral test
-
Determine whether the alternating series is convergent or divergent.
converges
converges
diverges, terms don't tend to zero
diverges, rewrite it so that you can see that \(a_n = (5/3)^n\)
converges
converges
diverges
diverges
converges
converges
diverges, terms don't tend to zero
converges, rewrite it without a trig function
-
Conditionally Convergent, Absolutely Convergent, or Divergent?
D
CC
AC, to get absolutely convergent, convert \(\log_4\) to \(\ln\) and use integral test
AC
D
AC, ratio test + that clever natural log trick for limits
D
CC
AC
CC
this is a neat problem
this is a really neat problem
-
Intervals of convergence.
\((-1,1)\)
\((-4,4)\)
\((-1/3,1/3)\)
\((2,8)\)
\((-1,1)\)
\((-1,1)\)
no interval, diverges for all \(x \neq -3\)
no interval, diverges for all \(x \neq 0\)
\((-8,0)\)
\((-1,1)\)
this is a neat problem
\((1,3)\)
-
Taylor Series (just the first few terms)
\(\dsp -1+2\, \left( x-1 \right) -3\, \left( x-1 \right) ^{2}+4\, \left( x-1 \right) ^{3}-5\, \left( x-1 \right) ^{4}+6\, \left( x-1 \right) ^{5}\)
\(\dsp 2x -8x^3/3! +32 x^5/5! - 128 x^7/7! \dots\)
\(\dsp 3+3\,\ln \left( 3 \right) \left( x-1 \right) + \frac{3}{2} \left( \ln \left( 3 \right) \right) ^{2} \left( x-1 \right) ^{2}+ \frac{1}{2} \left( \ln \left( 3 \right) \right) ^{3} \left( x-1 \right) ^{3}+\frac{1}{8} \left( \ln \left( 3 \right) \right) ^{4} \left( x-1 \right) ^{4}+\) \(\dsp \frac{1}{40} \left( \ln \left( 3 \right) \right) ^{5} \left( x-1 \right) ^{5}\)
\(\dsp {e^{2}}+{e^{2}} \left( x-2 \right) + \frac{1}{2}{e^{2}} \left( x-2 \right) ^ {2}+\frac{1}{6}{e^{2}} \left( x-2 \right) ^{3}+\frac{1}{24}{e^{2}} \left( x-2 \right) ^{4}+{\frac {1}{120}}\,{e^{2}} \left( x-2 \right) ^{5}\)
\(\dsp -x+\frac{\pi}{2} +{\frac {1}{6}} \left( x-\frac{\pi}{2} \right) ^{3}-{\frac {1}{120}} \left( x-\frac{\pi}{2} \right) ^{5}\)
\(\dsp x-{\frac {1}{2}}{x}^{2}+{\frac {1}{3}}{x}^{3}-{\frac {1}{4}}{x}^{4}+{ \frac {1}{5}}{x}^{5}\)
-
Use multiplication, substitution, differentiation, and integration whenever possible to find a series representation of each of the following functions.
\(\dsp \sum_{n=0}^\infty (-1)^n \frac{x^{2(n+1)}}{(2n)!}\)
\(\dsp \sum_{n=0}^\infty (-1)^n \frac{x^{4n+1}}{(2n+1)!}\)
\(\dsp 5\sum_{n=0}^\infty \frac{3^n}{n!}x^{n+1}\)
\(\dsp 2 \sum_{n=0}^\infty (n-1)r^n\) You know the series for \(\dsp \frac{1}{1-r}.\)