Section Solutions
¶-
Graph these functions and their derivatives.
\(F'(x)=-2x\)
\(h'(x) = 3x^2-9\)
\(f'(x)=-2\sin(2x)\)
\(g'(t)=3(2+3t)/|2+3t|\)
-
Compute the derivative of each function.
\(\dsp g'(t)=\frac{\sqrt{3}}{2\sqrt{t}}-\frac{3}{t^2} + \frac{15}{t^4}\)
\(z'(t) = 5x^4+9x^2+2\)
\(\dsp y' = -\frac{2x^4-13x^2-2}{(x^2-2)^2}\)
\(g'(t)=48t^{11}(5t^7-2t-4)^{11}(10t^7-t-1)\)
\(\dsp F'(z)=\frac{2+21z^2}{3\sqrt[3]{(2z+7z^3)^2}}\)
-
Compute and simplify the derivatives of these exponential and logarithmic functions.
\(a'(x) = -2xe^{x^2}\)
\(b'(x) = 2/x\)
\(c'(x) = \frac{x e^{\sqrt{x^2-1}}}{\sqrt{x^2-1}}\)
\(d'(x) = 3 +\ln(x^3)\)
\(\dsp g'(t)=\frac{(3t^2-16t+15)e^t - 3t^2+5}{(3t^2-10t+5)^2}\)
\(\dsp f'(t) = \frac{-t}{e^{t}}\)
\(n'(x) = 2x + 1/x\)
-
Compute and simplify the derivatives of these trigonometric functions.
\(C'(\beta )=3\left( \cos(5\beta) -5\beta \sin(5\beta)\right)\)
\(H'(x)=(10x+1)(4x^4+\tan(x))+(5x^2+x)(16x^3+\sec^2(x))\)
\(\dsp o'(x) = -\frac{\cos^2(x)+1}{\sin^3(x)}\)
\(p'(x) = -\sin(x)\cos(\cos(x))\)
\(\dsp r'(x) = 3\sin^2(x)\frac{x \cos(x)-\sin(x)}{x^4}\)
\(i'(x) = \;\;\; \mbox{ same answer as last one!}\)
-
Compute and simplify the derivatives of these mixed functions.
\(g'(t) = te^t\cos(t) + (t+1)e^t\sin(t)\)
\(h'(x) = (3x^2-3)\sec^2(x^3-3x)\)
\(\dsp k'(t) = -\frac{2x+3}{\sqrt{1-(x^2+3x)^2}}\)
\(\dsp m'(x) = \frac{5}{\sqrt{1-25x^2}}\)
\(q'(t) = (2t-2)e^{\sec(t^2-2t)}\sec(t^2-2t)\tan(t^2-2t)\)
\(s'(x) = 3x^2 + 3^x\ln(3)\)
\(t'(y) = \ln(2)(2y-3)2^{y^2-3y}\)
\(u'(x) = 3^{\sin(x)} + \ln(3)x\cos(x)3^{\sin(x)}\)
\(G'(x)=(x+1)^{\sin(x)}\left( \cos(x)\ln(x+1) + \sin(x)/(x+1) \right)\)
No solution.
No solution.
No solution.
\(f'(0) = 2.\)
\(y=(\sqrt{3} + 4\pi/3) x - 4\pi^2/9 \)