Section Solutions
¶Riemann Sums
Lower = 12.875, Upper = 17.375, Average = 15.125
15
Upper \(\approx\) -1.836, Lower \(\approx\) -1.903, Average \(\approx\) -1.869
Definite and Indefinite Integrals
-
Compute the following indefinite integrals.
\(\dsp{x^2 + \frac{1}{4}x^3 + c}\)
\(\dsp s + e^s + c\)
\(\dsp -\cos(x)+c\)
\(\dsp \sin(y)+c\)
\(\dsp \pi \sin(x) + \pi x +c\)
\(\dsp -\frac{1}{2}\cos(2t)+c\)
\(\dsp \frac{10}{3}x^{3/2} - \ln(x) +c\)
\(\dsp \frac{1}{3}x^3+x+c\)
\(\dsp \frac{1}{5}x^5 + \frac{2}{3}x^3+x+c\)
\(\dsp \frac{1}{6}(x^2+1)^3 + c\)
\(\dsp \sin(x^2)+c\)
\(\dsp 5\ln(t) + \frac{1}{5}\ln(t) + \frac{1}{\ln(5)} 5^t+c\)
\(\dsp \frac{1}{5} \sin^5(t) +c\)
\(\dsp \frac{1}{9} (5x^3-3x^2)^9 +c\)
\(\dsp \frac{5}{9}y^9 - \frac{5}{2}y^8 + \frac{20}{7}y^7 - \frac{2}{5}y^5 + 2y^4 - \frac{8}{3}y^3 +c\)
\(\dsp \frac{1}{6}t^6-\frac{3}{4}t^4+c\)
\(\dsp -\frac{\pi}{2}x^2+ex+c\)
-
Compute the following definite integrals.
\(8\)
\(6\)
\(84\)
-
Evaluate each integral.
\(\dsp x+{x}^{2} + k\)
\(\dsp \frac{1}{12}{t}^{4}-\frac{2}{3}{t}^{3/2} + k\)
\(\dsp 4 ( \tan(x) - \sin(x) ) +k\)
\(\dsp \frac{2}{5}\sqrt{z^5}-4\,{z}^{-1}+\frac{3}{16} \frac{3}{\sqrt[3]{4}\sqrt[3]{z^2}} + k\)
\(\dsp \frac{1}{3}\sqrt {x} \left( 3+x \right) \sqrt {2} + k\)
\(\dsp -\cos(t) + 2\sqrt(3t) + k\)
\(\dsp -\frac{1}{3}\cos \left( {x}^{3} \right) + k\)
\(\dsp -\frac{1}{6} \left( \cos \left( x \right) \right) ^{6} + k\)
\(\dsp -\frac{1}{3} \left( 1-{x}^{2} \right) ^{3/2} + k\)
\(\dsp \frac{1}{4} \left( 3\,{z}^{2}+6\,z+5 \right) ^{2/3} + k\)
\(\dsp \frac{1}{2}\sin \left( 2 \right) -\frac{1}{2} + k\)
\(1-\sqrt{2} + k\)
\(\dsp {\frac {2145}{4}} + k\)
\(\sqrt{2}-1 + k\)
\(\dsp {\frac {20}{3}}\,\sqrt {5}-{\frac {32}{3}} + k\)
-
Evaluate each of the following integrals, utilizing the suggested substitution.
\(\dsp 2/3\,\sqrt {x+5} \left( -10+x \right) + k\)
\(\dsp {\frac {3}{28}}\, \left( x-1 \right) ^{4/3} \left( 3+4\,x \right) + k\)
\(\dsp -1/3 \sqrt{4-x^2} (x^2+8) + k\)
\(\dsp 1/3\,\sqrt {{x}^{2}+1} \left( -2+{x}^{2} \right) + k\)
\(\int 1/2\,x\sqrt {9-{x}^{2}}+9/2\,\arcsin \left( 1/3\,x \right) + k\)
\(\dsp 1/4\,\ln \left( x+2 \right) -1/4\,\ln \left( x-2 \right) + k\)
\(\arctan \left( x \right) + k\)
Average Value, Mean Value, Fundamental Theorem and Arclength
\(-5\)
\(\dsp \frac{1}{2}\)
\(\dsp \frac{\sqrt{93}-3}{3} \approx 2.215\)
\(F'(x) =\cos(x)\)
\(F'(x) = x^3 - 4x + e^x \; dt\)
\(\dsp F'(x) = \frac{ e^x}{2\sqrt{x}}\)
\(\dsp \frac{ 74 \sqrt{37}-2}{27} \approx 16.6\)
Area and Volume
\(\dsp \frac{7}{3}\)
\(10\)
\(\dsp \frac{32}{3}\)
\(9\)
\(8\)
\(\dsp \frac{32}{3}\)
\(no\)
\(\dsp \frac{9}{2}\)
\(\dsp \frac{71}{6}\)
\(8 \pi\)
\(\dsp \frac{8 \pi}{3}\)
\(32 \sqrt{2} \pi\)
\(\dsp \frac{32\sqrt{3}}{3}\)
\(\dsp \frac{4\pi r^3}{3}\)
no answer — attempt to estimate whether your answer makes sense
no answer — attempt to estimate whether your answer makes sense
no answer — attempt to estimate whether your answer makes sense
no answer — attempt to estimate whether your answer makes sense
Work
15/4 ft lbs
650,000 ft lbs
2450 J
Center of Mass
\(95\) and approximately \(6.3\)
\(\dsp ( \frac{16}{105}, \frac{4}{15} )\)