Section Solutions
¶Basics
\(\frac{1}{4}x^4y - \frac{3}{2}x^2\) and \(4x^3-6x\)
\(e^{xy}(x-\frac{1}{y})\) and \(e^x(1-\frac{1}{x})+e^{-x}(1+\frac{1}{x})\)
\(9/2\)
\(25/4\)
Regions
it's a cone
it's the intersection of two circles
\(r \leq 3\)
\(2 \le r \le 5\) and \(\theta \in [-\pi/2,\pi/2]\)
\(\sqrt{2}-1\)
Integration
\(-705\text{,}\) Fubini's Theorem
\(\frac{1}{2} (e-1)\)
\(-\frac{1}{4}(17-5e^6)\)
\(\approx 11.62\)
\(\approx .346\)
\(6\)
\(\frac{2}{3}\)
\(\frac{24}{5}\)
\(\frac{1}{6}\sin^3(2)\)
\(\dsp \int_0^{81} \int_{\frac{x}{9}}^{\sqrt{x}} e^{xy} dA\)
\(4.5\)
\(\frac{2}{3} + 2\ln(2)\)
\(6\pi\)
Polar and Spherical Coordinate Integration
\(\dsp \frac{\pi}{4}\)
\(\dsp \frac{189\pi}{4}\)
\(\dsp \frac{-64(\sqrt{3}-2)\pi}{3}\)
Coordinate Transformations
\(-2u(\frac{1}{w}-1)-2v+\frac{1}{u}(2v^2-w)+v/u^2\)
\(r\)
\(\rho^2\sin(\phi)\)
\(2\)
\(\dsp \int_{0}^7 \int_{7v-v^2}^{v-v^2/2} \sqrt{u} du dv\)
area of ellipse is \(\pi a b\) in this case \(28\pi\) (just like circle)
volume of ellipsoid is \(4/3 \pi abc\) (just like sphere!)
Triple Integrals, Cylindrical, and Spherical Coordinates
\(2472/5\)
\(\dsp \int_0^1{\int_0^{1-x}{\int_0^{\frac{1-x-z}{2}} \ f(x,y,z) \ {dy\ dz\ dx}}} \\ \int_0^1{\int_0^{1-z}{\int_0^{\frac{1-x-z}{2}} \ f(x,y,z) \ {dy\ dx\ dz}}} \\ \int_0^{1}{\int_0^{\frac{1-z}{2}}{\int_0^{1-z-2y} \ f(x,y,z)\ {dx\ dy\ dz}}}\)
\(\dsp \int_0^3{\int_0^{-2x+6}{\int_0^{\frac{-4x-2x+12}{3}} \ f(x,y,z) \ {dy\ dx\ dz}}} \\ \int_0^4{\int_0^{-\frac{3}{4}y+3}{\int_0^{\frac{-4z-3y+12}{2}} \ f(x,y,z) \ {dx\ dz\ dy}}}\)
\(\dsp \int_0^\frac{1}{3}{\int_0^{\sqrt{\frac{1-9y^2}{2}}}{\int_0^{\frac{\sqrt{1-9y^2-4z^2}}{6}} \ f(x,y,z) \ {dy\ dx\ dz}}}\)
\(8\pi\)