Section Solutions
¶Domains of Functions
\(\{ (x,y) \in \re^2 : x^2 + y^2 > 1\}\)
\(\{ (x,y) \in \re^2 : y \neq 0 \}\)
\(\{ (x,y) \in \re^2 : |x| \neq |y| \}\)
all of \(\re^3\) except where \(z\) equals the Pisot numbers
\(\{ (x,y) \in \re^2 : |y| \lt 1 \}\)
Graphing Functions
a saddle centered at \((0,0,1)\)
a plane
squished paraboloid
planar saddle with a `point' at \((0,0,0)\)
a three dimensional sine wave
Limits
No, for a chosen value of \(k\text{,}\) the limit along the path \(y=kx^2\) would be \(\frac{1}{1+k}.\) Therefore the limit along different parabolic paths (different values of \(k\)) would yield different results.
Partial Derivatives and Gradients
\(\dsp g_x(x,y) = 3x^2 - \frac{8}{x\ln(7)} + \frac{y}{\sqrt{1-(xy)^2}}\)
\(\dsp g_y(x,y) = \frac{-x^3\cos(xy)}{\sin^2(xy)}\)
\(\nabla g(x,y) = ( y^2e^{xy^2}, 2xye^{xy^2} )\)
\(g_x(1,1)=g_y(1,1) = -3\)
\(g_y(\pi,2\pi)= 2\pi 5^{\pi^2}\)
\(\dsp \nabla h(x,y,z) = \big( \frac{z}{\sqrt{2xz-5y}} - 3z\cos(x)\cos^2(z\sin(x))\sin(z\sin(x)), \frac{-5}{\sqrt{2xz-5y}},\) \(\dsp \frac{x}{\sqrt{2xz-5y}} - 3\sin(x)\cos^2(z\sin(x))\sin(z\sin(x)) \big)\)
\(h_x(2,3,4) \approx 17,035\)
\(\dsp f_{xx}=\frac{12y}{x^5}, f_{zy} = -\cos(zy)+zy\sin(zy), f_{zxzy}=0\)
Directional Derivatives
Remember: Directions vectors should be unit vectors.
\(\frac{-3}{\sqrt{2}}\)
\(\frac{1}{13}(588 + 31e^3)\)
\((1-\frac{\sqrt{3}}{2})(e^2 + \frac{1}{2}))\)
\(\frac{42}{\sqrt{89}}\)
Derivatives
\(\nabla f(x,y) = (2xy^3,3x^2y^2)\)
\(Dg(x,y) = \begin{pmatrix}\frac{2x}{y} - 3y \amp - \frac{x^2}{y^2} - 3x \cr \frac{1}{y}\cos(\frac{x}{y}) \amp - \frac{x}{y^2}\cos(\frac{x}{y}) \end{pmatrix}\)
\(\nabla h(x,y) = (2x - y\sqrt{z}e^{xy\sqrt{z}}, -x\sqrt{z}e^{xy\sqrt{z}} + z \cosh(yz) )\)
\(\dsp Dr(s,t,u) = \begin{pmatrix}t \amp s \amp 0 \cr 2stu \amp s^2u \amp s^2t \cr \frac{tu}{2\sqrt{stu}} \amp \frac{su}{2\sqrt{stu}} \amp \frac{st}{2\sqrt{stu}} \cr \frac{t^2u}{st^2u} \amp \frac{2stu}{st^2u} \amp \frac{st^2}{st^2u} \end{pmatrix}\)
Chain Rule
\((f \circ g)'(t) = \sin(t)(4\cos(t)+7)\)
\((f \circ g)'(-1) \approx 188\)
(a) \(84\)
\(\nabla (f \circ g) = ( (2t^2-8s^3t)\ln(2st)+(2st^2-2s^4t)\frac{1}{s}, (4st-2s^4)\ln(2st) + (2st^2-2s^4t)\frac{1}{t} )\)
(a) \(f_s(s,t)=2\cos(t)-2(s+t)e^{2t}\) and \(f_t(s,t) = -2s \sin(t) - 2(s+t)e^{2t} -2(s+t)^2e^{2t}\)
Tangent Lines and Planes
\(\dsp \frac{\sqrt{14}}{7}\)
\(6x-8y-z=5\)
\(x + y - z = 1\)
\(L(t) = (2,-4,6)t + (1,-1,1)\)
\(3x + ey - z = 2e\)