Section Practice
¶These are practice problems for the tests. Solutions are in the next section. While we will not present these, I am happy to answer questions about them in class.
-
Graph these functions and their derivatives.
\(F(x)=-x^{2}+5\)
\(h(x) = x^3 - 9x\)
\(f(x)=\cos(2x)\)
\(g(t)=|2+3t|\)
-
Compute the derivative of each function.
\(\dsp g(t)=\sqrt{3t}+\frac{3}{t}-\frac{5}{t^{3}}\)
\(z(t) = (x^2+1)(x^3+2x)\)
\(\dsp y = \frac{2x^3+x}{2-x^2}\)
\(g(t)=(2t^{2}-5t^{8}+4t)^{12}\)
\(F(z)=\sqrt[3]{2z+7z^{3}}\)
-
Compute and simplify the derivatives of these exponential and logarithmic functions.
\(a(x) = 12-e^{x^2}\)
\(b(x) = \ln(x^2)\)
\(c(x) = e^{\sqrt{x^2-1}}\)
\(d(x) = x\ln(x^3)\)
\(\dsp g(t)=\frac{t+e^{t}}{3t^{2}-10t+5}\)
\(\dsp f(t) = \frac{1+t}{e^{t}}\)
\(n(x) = \ln(xe^{x^2})\)
-
Compute and simplify the derivatives of these trigonometric functions.
\(C(\beta )=3\beta \cos(5\beta)\)
\(H(x)=(5x^{2}+x)(4x^{4}+\tan(x))\)
\(o(x) = \csc(x)\cot(x)\)
\(p(x) = \sin(\cos(x))\)
\(r(x) = \left(\sin(x)/x \right)^3\)
\(i(x) = \sin^3(x)/x^3\)
-
Compute and simplify the derivatives of these mixed functions.
\(g(t) = t\sin(t)e^t\)
\(h(x) = \tan(x^3-3x)\)
\(k(t) = \invcos(x^2+3x)\)
\(m(x) = \invsin(5x)\)
\(\dsp q(t) = e^{\sec(t^2-2t)}\)
\(\dsp s(x) = 3^x + x^3\)
\(\dsp t(y) = 2^{y^2-3y}\)
\(\dsp u(x) = x3^{\sin(x)}\)
\(\dsp G(x)=(x+1)^{\sin(x)}\)
-
Each hyperbolic trigonometric function is defined. Verify that each stated derivative is correct.
Definition: \(\dsp \sinh(x)=\frac{e^{x}-e^{-x}}{2} \;\;\;\;\;\;\;\;\) Show: \((\sinh(x))'=\cosh(x)\)
Definition: \(\dsp \cosh(x)=\frac{e^{x}+e^{-x}}{2}\;\;\;\;\;\;\;\;\) Show: \((\cosh(x))'=\sinh(x)\)
Definition: \(\dsp \tanh(x)=\frac{\sinh(x)}{\cosh(x)} \;\;\;\;\) Show: \((\tanh(x))'=\sech^{2}(x)\)
Definition: \(\dsp \csch(x)=\frac{1}{\sinh(x)} \;\;\;\;\) Show: \((\csch(x))'=-\csch(x)\coth(x)\)
Definition: \(\dsp \sech(x)=\frac{1}{\cosh(x)} \;\;\;\;\) Show: \((\sech(x))'=-\sech(x)\tanh(x)\)
Definition: \(\dsp \coth(x)=\frac{1}{\tanh(x)} \;\;\;\;\) Show: \((\coth(x))'=-\csch ^{2}(x)\)
Show that \(\invsinh(x)=\ln(x+\sqrt{x^{2}+1}).\)
Show that \(\dsp (\invsinh(x))'=\frac{1}{\sqrt{x^{2}+1}}\text{.}\)
Compute the slope of the tangent line to \(\dsp f(x)=\frac{2x}{2^{x}}\) when \(x=0\text{.}\)
Compute the equation of the tangent line to \(g(x)=x\tan(x)\) when \(x=\frac{\pi}{3}\text{.}\)