Section Project: More on \(\oplus\) and \(\times\)
For the following statements, either prove that it is true using the set equality axiom, or prove that it is false by exhibiting a counterexample.
Problem 1.31.
\(\A \oplus (\B \cap \C)=(\A \oplus \B) \cap (\A \oplus \C)\)
Problem 1.32.
\(\A \cap (\B \oplus \C) = (\A \cap \B) \oplus (\A \cap \C)\)
Problem 1.33.
\(\sim (\A \oplus \B) = \sim \A \oplus \sim \B\)
Problem 1.34.
\(\A \oplus \B = \sim \A \oplus \sim \B\)
Problem 1.35.
\(\A \cup (\B \oplus \C) = (\A \cup \B) \oplus (\A \cup \C)\)
Problem 1.36.
\(\A\times(\B\cup \C) = (\A\times \B) \cup (\A\times \C)\)
Problem 1.37.
\(\A\cup(\B\times \C) = (\A\cup \B) \times (\A\cup \C)\)