Topology

Ed Grace
Throughout this outline, S is a set of points in which there is determined a collection of subsets called \textit{neighborhoods}, satisfying the following two axioms:

\textbf{Axiom 1:} Each point of S is contained in a neighborhood.

\textbf{Axiom 2:} If A is a neighborhood of a point p, and B is a neighborhood of p, then there exists a neighborhood C of p such that $A \cap B$ contains C.

\textbf{Definition 3:} S is called a topological space (or simply a space).

\textbf{Definition 4:} A is a \textit{neighborhood} of p if A is a neighborhood and $p \in A$.

\textbf{Definition 5:} A point p is an \textit{interior point} of a set H if there exists a neighborhood A of p such that $A \in H$.

\textbf{Definition 6:} A point set H is open if every point of H is an interior point.

\textbf{Proposition 7:} Neighborhoods are open.

\textbf{Proposition 8:} The union of any collection of open sets is open.

\textbf{Proposition 9:} The intersection of two open sets is open.

\textbf{Proposition 10:} S is open.

\textbf{Definition 11:} A subset H of S is closed if $S - H$ is open.

\textbf{Proposition 12:} The union of two closed sets is closed.

\textbf{Proposition 13:} The intersection of two closed sets is closed.

\textbf{Question 14:} Do Propositions 3, 5, and 6 extend to arbitrary collections?

\textbf{Definition 15:} A point p is a \textit{limit point} of H if every open set containing p contains a point of H distinct from p.

\textbf{Proposition 16:} A point set is closed if and only if it contains each limit point of the set.

\textbf{Proposition 17:} S is closed.

\textbf{Proposition 18:} The empty set is both open and closed.

\textbf{Proposition 19:} A point p is a limit point of H if and only if each neighborhood of p contains a point of H distinct from p.

\textbf{Definition 20:} The closure \overline{H} of a point set H, is the union of H and the set of all limit points of H.

\textbf{Proposition 21:} \overline{H} is the intersection of all closed supersets of H.

\textbf{Corollary 21.1:} \overline{H} is closed.
Definition 22: The interior (Int H) of a point set H is the set of interior points of H.

Proposition 23: Int H is the union of all open subsets of H.

Definition 24: The boundary ($\text{Bd} \ H$) of H is $\overline{H} - \text{Int} \ H$.

Proposition 25: $\text{Bd} \ H = \overline{H} \cap \overline{S - H}$

Proposition 26: $\text{Bd} \ H$ is empty if and only if H is both open and closed.

Definition 27: Two non-empty point sets A and B are separated if $A \cap \overline{B} = B \cap \overline{A} = \emptyset$.

Definition 28: A point set is connected if it is not the union of two separated sets.

Proposition 29: The unit interval $[0, 1]$ (with the standard topology) is connected. (Assume every nonempty subset of $[0, 1]$ has a least upper bound.)

Proposition 30: S is not connected if and only if there exists a nonempty proper subset H of S such that $\text{Bd} \ H = \emptyset$.

Proposition 31: If H is connected, then so is $H \cup H'$ where H' is in $\overline{H} - H$.

Proposition 32: If each of H and K is connected and $H \cap K \neq \emptyset$, then $H \cup K$ and $H \cap K$ are connected.

Definition 33: A collection G of points sets is coherent if G is not the union of two nonempty subcollections E and F such that $E^* \cap F^* = \emptyset$. ($E^* = \cup \{H : H \in E\}$)

Proposition 34: If G is a coherent collection of connected sets, then G^* is connected.

Proposition 35: If C is a connected set and G is a collection of connected sets no member of which is separated from C, then $C \cup G^*$ is connected.

Corollary 35.1: If C is connected and G is a collection of connected sets such that $C \cap H \neq \emptyset$ for each element H of G, then $C \cup G^*$ is connected.

Corollary 35.2: R^n (Euclidean n-space) is connected.

Definition 36: A collection G of open sets is an open covering of a set H if H is a subset of G^*.

Definition 37: A set H is bicomact if each open covering of H has a finite subcovering.

Proposition 38: The unit interval $[0, 1]$ (with the standard topology) is bicomact.
Proposition 39: A closed subset of a bicom pact space is bicom pact. The union of a finite family of bicom pact subsets of a space is bicom pact.

Corollary 39.1: The bicom pact subsets of R^3 are precisely the closed sets with finite diameters.

Definition 40: A family of sets has the finite intersection property (f.i.p) provided each of its finite subfamilies has nonempty intersection.

Proposition 41: A space is bicom pact if and only if each family of closed sets having the f.i.p. has nonempty intersection.

Proposition 42: A subset of R^n is bicom pact if and only if it is closed and has finite diameter.

Definition 43: A topological space is regular if for each point p and each neighborhood N of p, there exists a neighborhood M of p such that \overline{M} is a subset of N.

Proposition 44: S is regular if and only if for each point p and each closed set H not containing p, there exist open sets V and W such that $H \subset V \subset S - W \subset S - \{p\}$.

Definition 45: A point set K is nowhere dense if \overline{K} does not contain a nonempty open set.

Proposition 46: No bicom pact regular space is the union of countably many nowhere dense sets.

Definition 47: S is a Hausdorff space if for each pair x, y of distinct points of S, there exist disjoint open sets X and Y such that x belongs to X and y belongs to Y.

Proposition 48: In a Hausdorff space, a set is bicom pact if and only if it is closed.

Proposition 49: A space is Hausdorff if and only if it is regular.

Definition 50: S is normal if for each pair E, F of closed disjoint sets, there exist open sets V and W such that $E \subset V \subset S - W \subset S - F$.

Proposition 51: Every bicom pact Hausdorff space is regular.

Proposition 52: Every regular bicom pact space is normal.

Definition 53: A space is Lindelof if each open covering of the space has a countable subcovering.

Proposition 54: Every Lindelof space is normal.

Definition 55: A component of a point set X is a connected subset of X that is not a proper subset of a connected subset of X.
Proposition 56: Each point of a set H belongs to one and only one component of H.

Proposition 57: Is each component of an open set open?

Definition 58: The p-component of a set X is the component of X that contains p.

Proposition 59: The p-component of a point set X is the union of all connected subsets of X that contain p.

Proposition 60: If H and K are connected sets, $K \subset H$, and $H - K = A \cup B$ where A, B are separated sets, then $A \cup K$ is connected.

Question 61: Is $K \cup C$ connected when C is a component of $H - K$?

Definition 62: A continuum is a bicomponent connected Hausdorff space.

Proposition 63: Every nondegenerate continuum is uncountable.

Proposition 64: Every nondegenerate connected regular Hausdorff space is uncountable.

Question 65: Does there exist a nondegenerate countable connected Hausdorff space?

Proposition 66: No continuum is the union of a countable (> 1) family of nonempty disjoint closed sets.

Proposition 67: Suppose p and q are distinct points of a bicomponent Hausdorff space M, and suppose $\{ H_a : a \in A \}$ is an indexed collection of closed sets in M such that for each $a \in A$, $H_a \subset H_{a+1}$, and H_a cannot be separated between p and q. Then $\cap \{ H_a : a \in A \}$ cannot be separated between p and q.

Definition 68: A continuum C is irreducible between two disjoint sets if C intersects each set and no proper subcontinuum of C intersects both sets.

Proposition 69: Each pair of points of a continuum lies in a subcontinuum irreducible between the two points.

Definition 70: A continuum H is irreducible about a set K if H contains K and no proper subcontinuum of H contains K.

Proposition 71: If K is any subset of a continuum C, then C contains a subcontinuum irreducible about K.

Proposition 72: Suppose X is a bicomponent Hausdorff space, and p and q belong to different components of X. Then there exist separated sets H and K such that p belongs to H, q belongs to K, and $X = H \cup K$.

Question 73: Does Proposition 72 hold when X is not bicomponent?
Proposition 74: Suppose C is a continuum, and D is an open proper subset of C that contains a point p. Then $\text{Bd} \ D$ contains a limit point of the p-component of D.

Definition 75: Suppose that $\{X_n\}$ is a sequence of subsets of S. The set of all points x in S such that every open set containing x intersects all but a finite number of elements of $\{X_n\}$ is called the limit inferior of $\{X_n\}$ ($\liminf X_n$). The set of all points y in S such that every open set containing y intersects infinitely many elements of $\{X_n\}$ is called the limit superior of $\{X_n\}$ ($\limsup X_n$).

Proposition 76: $\liminf X_n = \limsup X_n$.

Proposition 77: $\limsup X_n \neq \emptyset$.

Proposition 78: If $\liminf X_n \neq \emptyset$, then $\limsup X_n \neq \emptyset$.

Proposition 79: $\liminf X_n = \liminf \overline{X_n}$ and $\limsup X_n = \limsup \overline{X_n}$.

Proposition 80: $\liminf X_n$ and $\limsup X_n$ are both closed sets.

Proposition 81: If $\{X_n\}$ is a sequence of connected sets in a continuum, and if $\liminf X_n$ is not empty, then $\limsup X_n$ is a continuum.

Definition 82: A function f of S into a space T is continuous provided that if p is a point of the closure of a subset X of S, then $f(p)$ belongs to $\overline{f[X]}$. A continuous function is sometimes called a map.

Proposition 83: For real-valued functions of one real variable, this definition is equivalent to the standard $\delta - \epsilon$ definition.

Proposition 84: Suppose f is a function of S into a space T. Then f is continuous if and only if for each open set G of T, $f^{-1}[G]$ is open in S.

Question 85: Does Proposition 84 hold when the word “open” is everywhere replaced by the word “closed”?

Proposition 86: Every continuous image of a connected space is connected.

Proposition 87: Every continuous image of a bicom pact space is connected.

Question 88: Is the Lindelof property a continuous invariant?

Proposition 89: Every continuous image of a Hausdorff space is Hausdorff.

Proposition 90: The composition of two continuous functions is continuous.

Proposition 91: Suppose X is a bicom pact space, Y is a Hausdorff space, and f is a one-to-one map of X onto Y. Then f^{-1} is continuous.

Question 92: Does Proposition 91 hold when X is not required to be bicom pact?
Proposition 93: Every line interval $[a, b]$ is an image of $[0, 1]$ under a one-to-one map.

Proposition 94: S is a normal space if and only if for each pair A, B of disjoint closed subsets of S, there exists a map f of S into a line interval $[a, b]$ such that $f[A] = a$ and $f[B] = b$.

Proposition 95: For each positive integer n, let f_n be a map of S into the real line. Suppose there exists a convergent series of positive numbers $\sum_{n=1}^{\infty} M_n$, such that for each point x of S and each n, $|f_n(x)| \leq M_n$. Then for each point x of S, the infinite series $\sum_{n=1}^{\infty} f_n(x)$ converges to a number $f(x)$, and the function f so defined is continuous.

Definition 96: S has the continuous extension property provided that for each map f of any closed subset H of S into an interval $[a, b]$, there exists a map f^* of S into $[a, b]$ such that $f^*(x) = f(x)$ for each point x of H.

Proposition 97: S is normal if and only if S has the continuous extension property.

Proposition 98: Suppose S is normal, and f is a map of a closed subset H of S into I^n (the Cartesian product of $[0, 1]$ with itself n times). Then there exists an extension f^* of f to all of S (i.e., $f^*: S \to I^n$ and $f^*(x) = f(x)$ for each point x of H).

Definition 99: A collection C of open sets is a base for S if for each point p of S, and each open set U of S that contains p, there exists an element G of C such that $p \in G \subset U$.

Definition 100: The Cartesian product of the indexed collection of sets $\{X_a : a \in A\}$ is the set of functions $\times \{X_a : a \in A\} = \{f : A \to \bigcup\{X_a : a \in A\}\}$ and $f(a) \in X_a$.

Definition 101: The a-th projection map is the function $P_a: \times \{X_a : a \in A\} \to X_a$ such that $P_a(x) = x_a$ for every point x of $\times \{X_a : a \in A\}$.

To define the standard topology given to the Cartesian product, called the product topology, we define the base.

Definition 102: A subset D of $\times \{X_a : a \in A\}$ belongs to D if there is a finite subset $\{a_1, a_2, \cdots, a_n\}$ of A, and open subsets D_1, D_2, \cdots, D_n of $X_{a_1}, X_{a_2}, \cdots, X_{a_n}$, respectively, such that $D = \{x \in \times \{X_a : a \in A\} : x_{a_i}$ belongs to D_i for $i = 1, 2, \cdots, n\}$. The collection forms a base for the product topology.

Proposition 103: If D is open in $\times \{X_a : a \in A\}$, then $P_a[D]$ is open for every a belonging to A.

Proposition 104: A function $f: S \to \times \{X_a : a \in A\}$ is continuous if and only if $P_a f$ is continuous for each a belonging to A.
Proposition 105: The space $\times \{X_a : a \in A\}$ is Hausdorff if and only if each X_a is a Hausdorff space.

Proposition 106: The product of two connected spaces is connected.

Proposition 107: The product of two normal spaces is normal.

Proposition 108: The product of two bimetric spaces is bimetric.

Question 109: Do Propositions 106, 107, and 108 extend to all Cartesian products?

Definition 110: A function $d : S \times S \rightarrow [0, +\infty)$ is a metric for S if for every x, y, and z belonging to S:

1. $d(x, y) = 0$ if and only if $x = y$;
2. $d(x, y) = d(y, x)$; and
3. $d(x, y) + d(y, z) \geq d(x, z)$.

Definition 111: S is a metrizable space (metric space) if there exists a metric d for S such that the collection $\{N(x, r) : x \in S$ and $r > 0\}$ is a base for the topology of S where $N(x, r) = \{y : d(x, y) < r\}$.

Proposition 112: The function d (defined above) is continuous.

Definition 113: S is first countable if for each point p of S there exists a countable collection C of open sets (each containing p) such that every open set in S that contains p also contains an element of C.

Proposition 114: S is metrizable if and only if S is first countable.

Definition 115: A set is said to be of type G_δ if it is the intersection of countably many open sets.

Proposition 116: Every closed subset of a metric space is of type G_δ.

Proposition 117: S is second countable if S has a countable base.

Proposition 118: Every bimetric metric space is second countable.

Definition 119: A sequence $\{X_n\}$ is a convergent sequence if $\lim \inf X_n = \lim \sup X_n$.

Proposition 120: If M is a bimetric metric space, then every sequence of subsets of M has a convergent subsequence.

Definition 121: A set D is a dense subset of a set E if $D \subseteq E \subseteq \overline{D}$.

Definition 122: S is a separable space if there exists a countable dense subset of S.

Proposition 123: A metric space is separable if and only if it is second countable.

Proposition 124: Proposition 123 holds for all spaces.

Proposition 125: Proposition 120 holds for separable metric spaces.

Proposition 126: A metric space \(M \) is bicontinuous if and only if every infinite subset of \(M \) has a limit point.

Proposition 127: Proposition 126 holds for all spaces.

Proposition 128: If every uncountable subset of a metric space \(M \) has a limit point, then every uncountable subset of \(M \) has a limit point.

Proposition 129: A metric space \(M \) is Lindelöf if and only if every uncountable subset of \(M \) has a limit point.

Proposition 130: Proposition 129 holds for all spaces.

Definition 131: A sequence of points \(p_i \) in a metric space \((M, d) \) is a Cauchy sequence if for each real number \(r > 0 \), there exists an integer \(N \) such that \(m, n > N \) implies \(d(p_m, p_n) < r \). The metric space \((M, d) \) is complete if each Cauchy sequence in \(M \) has a limit point in \(M \).

Definition 132: A homeomorphism is a one-to-one map whose inverse is continuous.

Proposition 133: Suppose \((M_1, d_1)\) and \((M_2, d_2)\) are metric spaces, and there exists a homeomorphism of \(M_1 \) onto \(M_2 \) (i.e., \(M_1 \) and \(M_2 \) are homeomorphic). Then \((M_2, d_2)\) is complete if \((M_1, d_1)\) is complete.

Proposition 134: Every closed subspace of a complete metric space is a complete metric space (with respect to the restricted metric).

Proposition 135: Suppose \(D \) is a dense type \(G_δ \) subset of a complete metric space \((M, d)\). Then \(D \) is not the union of countably many nowhere-dense subsets of \(M \).

Question 136: Is \(D \) in Proposition 135 a complete metric space?

Proposition 137: The rationals are not a \(G_δ \) subset of \(R^1 \).

Definition 138: Let \# denote the first uncountable ordinal, and let \([1, \#]\) denote the set of all ordinals up to and including \# (similarly, \([1, \#)\) denotes those up to but not including \#). For every pair of ordinals \(a \) and \(b \) \((a < b)\) in \((1, \#)\), the segment \((a, b) = \{ x : a < x < b \}\) and the sects \([1, a)\) and \((a, \#]\) are neighborhoods.

Proposition 139: If \(C \) is a collection of neighborhoods that cover \([1, \#)\), then there exists \(x < \# \) such that \(\bigcup \{ G \in C : x \in G \} \) covers \([x, \#)\).
Proposition 140: Suppose f is map of $[1, \#)$ into \mathbb{R}^1. Then a point x of $[1, \#)$ and a real number r exist such that $f([x, \#)) = r$.

Proposition 141: $[1, \#)$ and $[1, \#]$ are normal.

Proposition 142: $[1, \#]$ is metrizable.

Proposition 143: $[1, \#)$ is metrizable.

Proposition 144: $[1, \#]$ is bicomplete.

Definition 145: A metric space S is complete if there exists a metric k for S such that (S, k) is complete.

Proposition 146: $[1, \#]$ is bicomplete.

Proposition 147: Every infinite subset of $[1, \#)$ has a limit point.

Proposition 148: The product of countably many metric spaces is metrizable.

Proposition 149: The product obtained by crossing $[0, 1]$ with itself countably many times is metrizable.

Proposition 150: Proposition 148 is true if the word “countable” is replaced by the word “uncountable”.

Proposition 151: Every regular second countable Hausdorff space is metrizable.