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To the Instructor

0.1 Introduction - The Topic

In a way, Advance Calculus is an odd topic. There seems to nayt@ing
new going on, as by the time a student gets to this class hb&shbad at
least three semesters of calculus. So everyone is familtarlimits, dif-
ferentiation, integration, and sequences & series. It abse the material
is familiar that the study of analysis can be misleadings thie depth that
makes the course what it is and oftentimes confusion oved#pth can
create issues.

I still recall sitting in this class as a student wonderingvho the world
| was going toprovethat absolute value was non-negative when there was
nothing to do. Everyone just knows it is so. Such is how | begaralize
| was not in Kansas anymore. However, | was determined to wemipis
class and understand the deeper parts of calculus. In fastdat was life
changing as | went on to earn my PhD in classical real anadysiscontinue
to publish in this area.

In this anecdote lies important details. After so many yéeiag told
that something was true, it was difficult to think along theek of why
it was true. Especially since class at that time was all albistgning to
lecture, a passive act. However, there is something to getieeixabout as
one sees that this is not a topic that has been wrung dry, authbre are
generalizations and extensions to these topics which tkeested student
can follow to who knows where. There are ideas and proofsharetyet
to be written. So this text was written with the idea of gejtthe students
actively involved in thinking about mathematics and seaiogne new(-ish)
ideas out there.

0.2 Introduction - The Book

This book is for the first semester of a yearlong course in acke calcu-
lus/real variables. It was used this way at Slippery Rock Brsity where
the sequence is a requirement for all math majors. Typicsllgh a class
has between 8 and 20 students. The notes are parsed out todbets as a
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series of handouts. The pace of the course and the contdx¢ dieindouts
will vary from instructor to instructor - you should edit tpeoblems based
on the ability and needs of your students. During the refegeprocess
| was asked to place back the pagebreaks when | developeel tio¢ss.

This is a request | respectfully decline. You may decide teotke more

time/problems to a topic and skip other things entirely. BigX code is

available for anyone who wants to shift things around.

As | teach the course, each handout contains DefinitiongrAsj Prob-
lems, Exercises, and a few Theorems. Anything labelled f@medqwhich
by virtue of being called a theorem must be true) needs to twepr Any
Problem will start with the directive “Prove or Disprovet’i$ up to the stu-
dent to determine the truthfulness of the statements artdis ifrue, provide
a proof; if it is false, give a counterexample with explaaatiBoth of these
types of assignments can be presented at the board for pandprofes-
sionally written solutions are to be turned in. Exercises lba presented
at the board for a grade, but are not turned in. The Exercisetoahelp
illustrate definitions and topics. Similarly, there are Retsdhroughout to
explain concepts and introduce new discussions. Some Bravesprove
items have quick and easy counter-examples. | have fouricbtize the
counter-examples are presented a good next step is to askuttent how
to change the problem to make it into a theorem. Problem X tbads
to Problem X, Part 2 which a student can then get credit fovipgpand
presenting.

There is debate among practitioners of the Inquiry-Basediieg (IBL)
about how to present the method to a class. Does one just piayg @ the
course, acting as if IBL is the usual thing or spend time exjhgi to the
students how self-discovery is a better way to learn and cvmitaterial?
Should the students be shown evidence of why IBL is best todwipince
them that it is good? The decision of what to tell studentisnfiost a
personal matter. Each instructor must determine his/herway. As for
me, | steal an analogy from Ron Taylor of Berry College. At theileigg
of the first day of class for the year, | talk about juggling. dfide what
juggling is and then give a short demonstration of jugglinthen | say
to them, “Now you should be able to juggle. If you go home tbihignd
practice a little, you will able to juggle just fine.” This ig) essence, the
lecture-homework-move on format that most classes folleinally |1 pass
out a review sheet of problems. These come from our intréaiucd proof
course called Modern Concepts of Mathematics. There are inmopes to
this: first, to review what | expect the students to know andHie to handle
(induction, proof my contradiction, direct proof, etc.) dasecond, to get
them up at the board on the second day, presenting somettegpghould
be more comfortable with as it is not new material. These lprab, and
these problems only, may be worked on in a group. The end cfebend
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day is the first page of Axioms, Definitions, Exercises, andj&dares. Of
course, the first day of the second semester the studentseadyaprepped
on how the class runs. A group email before the first day cae tjiem
some problems to be thinking on for the new semester.

0.3 The Instructor in the Classroom

The most difficult part of being the instructor in an IBL segtiis keeping
quiet. This does not mean | remain absolutely quiet. Stidsinbuld be
encouraged to ask questions of the presenter and, espeati#iie start of
the course, they sometimes need help formulating an exadtign. So
I will rephrase things or ask them to be more specific withrtbieughts.
In addition, if a presenter is having trouble, perhaps aWelstudent has
pointed out an issue that the presenter is struggling wiblveng, | will

suggest he/she takes a break and we revisit the problemxhelass day.

The instructor is also the official keeper of the records.vigthe official
list of which problems have been presented and which at@pgh. These
are two things the students do tend to keep track of, too. thutdilly, | keep
track of any tweaks that result in a new problem. The lattsoimething |
really enjoy, though it took some getting used to. When newemuares
arise | do not always know the answer (as opposed to using whexe the
problems are mostly the same regardless of the book). lddamembrace
the time of discovery via students. A typical day starts kirasif anyone
has anything to present. Using my records, if | do see somsofadiing
behind in presentations | will say, “We haven’t heard froomZawhile. Do
you have something to present?” Some colleagues use seftowdteep
track of such things. If you get involved in the IBL communityuy/should
be able to find them if you want.

At the beginning of the day | pass back write-ups, make a femegd
announcements (“Math Club meeting Thursday,” or “Make swre gre
using the right notation in your limit proofs.”), and pasg any new pages.
Then | take my seanh the back of the roomStudents have a tendency to
look at me to see if | react and use that to decide if they shoukhould
not be looking for questions to ask. So the sides of the ro@oat. The
presenter, the one person who is supposed to be looking inimgtidn,
will still try and find confirmation in my face. It is importard remain
impassive and let the presenter and his/her classmatesitvedirkut.

After | sit down my role is that of moderator, helpingftatherthe class
discussion, but not to lead it. In the early days, | make Sueepresenters
are writing clearly and pausing between important statesmmtheir class-
mates can keep up. | might spur students to ask questiony/mgséDoes
everyone agree with line 3?” or “Is there an assumption beiage here
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when the theorem is applied?”

In summary, the instructor acts as bookkeeper with the probland the
grades and after that is a facilitator, making sure the classins on task
and that learning occurs.

0.4 Why these notes

One reason | decided to write my own notes is to introduceestisdto
some of the generalizations and types of questions that@uenié&ke my-
self, who publishes in classical real analysis, faces isthelarly life. Thus
there are topics on these handouts that are not found in pieatyanalysis
book/course. These include generalized continuity andergence in met-
ric spaces. None of these topics are covered too deepho(gthmetric
spaces turn up again and again). It is amazing how well treests can do
when they are not told that these topics are post-Bacheéwes or atypical.

0.5 Course Content

These notes are for the first semester of a two semester Aeldadalcu-
lus/Real Analysis sequence. There are several goals at veoek Ifrirst is
the in-depth study of a particular topic. Such depth is ingarfor students
of mathematics. Sometimes this is accomplished throughdaa analysis
sequence; sometimes a year-long algebra class; sometienasovdiffer-
ent, but related classes (a semester of algebra and one bentineory or a
semester of real variables followed by one in complex véegb Secondly
is honing the students’ skills in writing proofs. All studenby the time
they are ready for this class, have some learning in cortsiguproofs and
proof techniques (direct, contradiction, contraposijtimeuction, et al.), but
one only gets better at this by writing more and more proadspy reading
about proofs. Lastly, as with many “pure” math classes, ¢bigrse should
give students the opportunity to see how one extends thedaoies of what
is known and not known via conjecture. This is where manybi@ok ori-
ented classes fail as books do not rightly convey the stopsints of what
a mathematician studies, instead presenting a polishedt that unfortu-
nately gives students the impression that all that can bevkn® known.

The topics covered in the first semester are
e fundamentals of the real line,
¢ limits and convergence, and

e functions and continuity.

Dr. Robert W. Vallin www.jiblm.org
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In the second semester, we continue onward by studying

o differentiation,
e integration,
e series of numbers, and

e series of functions.

Included in this text are several types of generalizaticheimain topics.
For instance, symmetric derivatives and the Riemann-fetsalitegral. The
hope is to show students how things progress after what dzpéd in the
Calculus sequence. Problems that are shown false by a caxatemple
(e.g. Letf have the property thaft(a) - f(b) < 0. Then there is a valug
with a < ¢ < b such thatf (c) = 0.) are ripe for the question, “How can we
change this to make it true?” during the problem’s presentaf his shows
how mathematicians hone an idea until it is both precise ancct. One
of my favorite ideas is the so-called pathological exam$lemething so far
afield from a certain property as to be considered a “mathealahonster.”
A continuous, nowhere differentiable function is an exasdl this. Many
of the requests for examples in this text are leading theessiiLidward some
of these monsters.

0.6 Grading

My gradebook consists of three separate sections: homepi@asentations,
and exams. They are described below, however, for eaclhiatsty there are
many ways to determine grades. The ensuing paragraphsientie final
percentages | use in this class. My technique is not a compitéaabt even
a suggestion. Itis an example.

Section One is for written homework turned in. This assigmathework
is worth 20% of the final grade. Someone once referred to teihod as
having perpetual homework. No one warned me about the peipgtad-
ing. You are now forewarned. | insist that homework is writtgp neatly
and professionally. Students do not need to &§eXL(though | would not
complain), but since there is an emphasis on learning to aomuate math-
ematics, the students need to learn that doing sloppy wartiscceptable.
Homework falls into two categories: before presentaticoh a@fiter presenta-
tion. Before presentation homework that is correct and welten receives
a grade of 10. Originally, my syllabus said homework that isages will
receive a grade between 1 and 9, but | found over time thassislemething
spectacular happened | only used the grades 9 (small erfrgessentially
correct, but not a perfect presentation), 5 (on the way, lhott\&rong), and
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3 (trying). The grade of 1 was very rare as students did nog lzakard
deadline and would wait until they had some confidence irr therk be-

fore turning it in. So rather than 1 - 10, my grades are now 5, 3, 9, and
10. After the problem was presented, a student could still tua write-up

for either a grade of 5 (correct) or 3 (mostly correct). Atdlage of an exam,
| cut off the students from turning in any more problems frdma sections
covered. There is a bit of self-defense here. | do not wartytproblems
from the beginning of the semester turned in at the end becstuslents
finally got around to writing their solutions to them.

Section Two is for student presentations. Percentagethiseounts as
10% of the grade total. The grading scale is 2 points througbiits. Two
is the minimum since students do not really present unlesshhve some
content and confidence in their work, so they have earnedthamge | do
not recall anyone actually settling for a two, though, as theans there are
some major flaws in the mathematics. So you may think of thes?dace-
holder, which will be replaced with a grade for a subsequeesgntation.
Three is for an average attempt. The student has given taodesas, with
some flaws in terms of presentation and boardwork. A presentat the
level of 4 is correct and has a bit of polish to it. Somethingt tan be fol-
lowed by the students. A 5 is for an exceptional job. An absbhcorrect
solution with an excellent presentation where the concagtb¥roken down
well and understood by the class earns this grade. On ragsiocg the
presenter surprises me with a direction | never saw comingl] give that
a 5.5 out of 5 for creativity.

For a topic such as this, | tend to look at trends more thanages:. |
would not compare a student with 5 presentations worth 20tp@igainst
one with 8 presentations and 30 points. For the final gradent walook at
theweightedotal. If the grade is borderline what | will look at is trends
see if the presentation grades improved over time.

Students who are not actively presenting are still capableaoning
points while a presentation is happening. This is Sectiored@h Those
grades are for Questions, Insights, and Contributions (@), lEach of these
types of grades is a single point, but students can earnpteuftibints per
day. A “Q” is a good question. An example of this is, “Is yousasption
the same as saying it's a Lipschitz function?” Questionhias; “Can you
say why your second line works?” and “Should thatfb@nd notf?” are
good questions, and students should be encouraged to asklibeare not
worth credit. The “I” is for some mathematical insight, a goent such as,
“So a Riemann integral is a Riemann-Stieltjes integral wigéxg= x.” The
“C” for contribution is hard to nail down exactly, but as SupeCourt Jus-
tice said, “I know it when | see it.” These points are part & gresentation
grade. A good question or comment is as worthwhile as a nesgptation.
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To the Instructor ix

In addition to all of this, | give three exams and a comprelent-
nal. For each exam | will also give them a list of problems whproof or
counter-example | expect them to know. A majority of the examich is
all proof and example, comes from that list with usually oreoem thrown
in that they have not seen to separate the A's from the B’s inlagsc These
are two different parts of a student’s final grade. The exaenage is 50%
of the course grade and the final is 20%.

Two things | wish to point out before finishing this section:

First, | have been criticized in the past for the percentdgese. The
critics’ point is mostly that students can pass this claghout doing a lot
of presentation and/or turning in their own version of solu$ rather than
what their peers show at the board. I, myself, don’'t see mfiehpooblem
with this. If a student knows enough of the material, thersihe/knows
enough of the material. | do believe my tests do have one optablems
that require enough creativity to separate the As from tref&m the rest.

Second, the question comes up how all these sections arehpeoome
together to make a final grade. | was given some very preseaigvite
before | started this class and it was absolutely spot on antething |
wish to pass to you. The final totals tend to self-segregadehESemester,
when | computed the final spreadsheet there were obvioukshvumere the
As, B's, C’s, D’s, and F’s lay.

0.7 The Rules for Presentations

Presentations will be scored in the following way

e Accuracy of the problem you present, including the guidedibelow.

e Defense of your work, including following the guidelinedde.

Points: You will be awarded a point in the appropriate categevgry time
you contribute in one of the following ways.

e P presentation points awarded

— 5 points for a correct presentation
— 2 - 4 points for a presentation with error(s)

e Q asking a good question of the presenter
e | contributing a demonstration of a mathematical insight

e C an oral contribution other than the two categories above

Dr. Robert W. Vallin www.jiblm.org
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Remember: the presenter should be the person to answer &quest

Guidelines for Your Presentation

e Write the problem on the board.
¢ State what method/theorem/idea you will use.
e Clearly explain each step.

e Do not use the words stupid, trivial, obvious, etc.

Guidelines for Defending Your Work

e You must answer your classmates and professors questicmsdn
spectful manner.

e Do not use the words stupid, trivial, obvious, etc.
e You must try to answer every question raised.

e It is okay to say, “I'm not sure that | understand your queastidt is
not okay to say, “Your question doesn’t make any sense.”

e Talk to the class, not to the board.

Guidelines for Criticism of Classmates Work

¢ You are to ask questions about your classmates work. Do N@Jest
another technique. In some cases, there may be more thanagrie w
solve a problem.

e Do not use the words stupid, trivial, obvious, etc.
e You must ask questions in a respectful manner.

e Its okay to say, “Can you explain how you got from line 3 to liri& 4

It is not okay to say, “Line 4 is wrong,” or “Line 4 doesn’'t makeay
sense.”

Dr. Robert W. Vallin www.jiblm.org



To the Student

0.8 Introduction - Advanced Calculus

Advanced Calculus (or Mathematical Analysis) is one of thetmportant
classes one takes as a math student. Unlike a class in, sagdlalgebra,
where the main concepts (rings, groups, fields) are new,isnclass we
will look at topics you should be familiar with from your el calculus
sequence (limits, differentiation, integration, and sses & series). That
is the good news. Since you are familiar with all these tqpidsat this
class then is about is an increase in rigor. This is not abetérohining
the integral of a given function, but about proving what tgbéunction is
integrable. We will also, as is expected in higher-levelhmeatatics, look at
some generalizations of these ideas. This serves as aduotion to what
many mathematicians do when researching a topic.

Now, a word about prerequisites. Most courses of this tygeire a C
or better in a course on proof techniques. Let us be blunt Fegrade of
C or better doesiot mean that you have some vague recollection a course
that had a lot of proofs in it. It means that you learned theem@tand are
capable of both creating your own proofs and following psoof others.
The types of proof techniques you should be familiar witdude, but are
not limited to, induction, direct proof, proof by contratien, and proof by
exhaustion.

This is an extremely important course as it develops theétalba apply
logic, which is what makes the math major so desirable to eyeps (see
www.maa.org/careers/ for more details). It takes hard wouk it is worth
it.

Now, all that said, let me add that mathematics is one of th&t Breative
disciplines out there. There is very little difference betw the imagination,
hard work, and focus needed to paint a still life and to deitr@ena proof.
Note that | did not say paint thdona Lisaand proveFermat’s Last Theo-
rem Just as you don’t have to paint masterpieces in order ty @gmting,
you do not have to solve the greatest open problems in matiesnta en-
joy the thrill and pride associated with developing a pra@farning to find
proofs and write proofs is a skill that comes with practicdptaof prac-
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tice. If you start to feel discouraged and like you are flgilend lost, |
suggest you think about the man who did solve Fermat's Lasbiidm and
his thoughts on doing math.

| can best describe my experience of doing mathematicsnmster

of a journey through a dark unexplored mansion. You enter the
first room of the mansion and it's completely dark. You stuenbl
around bumping into the furniture, but gradually you leahreve
each piece of furniture is. Finally, after six months or smy §ind

the light switch, you turn it on, and suddenly it’s all illun@ted.

You can see exactly where you were. Then you move into the next
room and spend another six months in the dark. So each of these
breakthroughs, while sometimes they’re momentary, sonesti
over a period of a day or two, they are the culmination of — and
couldn’t exist without — the many months of stumbling aroimd

the dark that proceed them.

Andrew Wiles, Princeton University

Get ready and get excited to take a journey deeper into daahgn you
have gone before. And enjoy the trip!

Dr. Robert W. Vallin www.jiblm.org
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0.9 R.L. Moore and his Method

That student is taught the best who is told the least.

R.L. Moore, 1882-1974

[Dr. Moore] told us early on that he had no use for the univgrsi
guidelines stating that we should expect three hours ofidmits
class work for each hour in the classroom. He said he wanted us
to think about his class all day, every day, to go to bed timgki
about it, to wake up in the night thinking about it, to get up th
next morning thinking about it, to think about it walking ttass,

to think about it while we were eating. If we weren't prepated

do that, he didn’t want us in his class. It was also quicklydewit

that he meant what he said....

John Green, PhD, University of Texas, 1968, under R. L. Moore

The core of any course using the Moore Method (a type of liygBased
Learning) is the understanding that people learn best bygdthie work,
not by being told the results. Moore developed his method®ihliwhile
teaching at the University of Pennsylvania and then tooktih Wwim to the
University of Texas where he worked from 1920 until his \estient in 19609.
The mathematics building at UT is named after him.

To begin with, a true Moore Method course has no book. Instted
“book” for the course is written by the students as the seengstar goes
on. That is, at the end of this course the collection of defing, axioms,
and results you have will be enough for a text. Each and evedest is
expected to do his/her own work. The use of outside sournekifling, but
not limited to, books, the internet, tutors, friends, chaates, and professors
who are not me) is strictly forbidden.

You will be given handouts which contain Definitions, Axionm&rob-
lems, Exercises, and a few Theorems. You are to provide prfoofany-
thing labelled Theorem (which by virtue of being called aditean must be
true). Any problem will start with the directive “Prove or §prove.” It is
up to you to determine the truthfulness of the statementsiénds true,
a proof; if it is false, a counterexample with explanatioxet€ises can be
presented at the board for a grade, but not turned in. ThecEBesrare to
help illustrate definitions and topics. Similarly, there &emarks through-
out to explain concepts and introduce new discussions.

In addition, to written work, you will be presenting at theaod. There
will be little, if any, lecture in this class. On class daysuywill be called
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on to present solutions. You may choose to show your work gmpesblem
not yet presented in class. If you are not the first personeshos a given
day, you will not have your choice of all assigned problemsisTneans
that you may not get to present your first choice problem, sosjmuld be
prepared with solutions to more than one problem.

During student presentations, you are encouraged (expjeéotask ques-
tions, and to think critically about the solution presenbgdhe classmate.
The class has the job of determining the validity of argurmgamesented,
and the instructor will occasionally allow incorrect saduts to stand in
class. These incorrectly presented problems may appeasts tWhile
“Should that two be a three?” is a question, you should alkd'@an you
explain how you went from Step 2 to Step 3.” Don’t worry, if ybave that
guestion, so do others and the presenter should be ableweatisat ques-
tion and others. Every once in awhile there are question®enomdoesn’t
know how to answer. It happens to everyone, so the presémeidsnot
feel bad or embarrassed. The response of “I'm not sure,dilEtto get back
to you,” is absolutely fine, buhe speaker is then responsible for finding out
the answer and showing it to the clads will not take you long to figure
out how to be the speaker and how to be an active audience meiritsan
it’s just a matter of enjoying the learning.

Dr. Robert W. Vallin www.jiblm.org
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A quote from Paul Halmds

“Don't just read it; fight it! Ask your own questions, look fooyr own
examples, discover your own proofs. Is the hypothesis regésds the
converse true? What happens in the classical special cade® &thout the
degenerate cases? Where does the proof use the hypothesis?”

and another

“Mathematics is not a deductive science — that's a dichWhen you
try to prove a theorem, you don't just list the hypotheses, tien start to
reason. What you do is trial and error, experimentation, gaveork.”

and a final one

“Itis the duty of all teachers, and of teachers of mathensatincparticu-
lar, to expose their students to problems much more thancts fa

LIf you do not know who Paul Halmos was, you may find it worthwhilédok him up after you are done with
analysis.

Dr. Robert W. Vallin www.jiblm.org



Chapter 1

Review of Proof Techniques

This is not graded work, but necessary work nonetheless. MWegawover
the proofs in the next class with you doing the presentatitwwever, unlike
the rest of the problems, you may talk amongst yourselvestahese.

1. Proofs by Induction
An induction proof is used when the statement being provenésthat
has truth values on a subset of the natural numierfghe form{k, k+
1,k+2,...}. Usually, but not always, this is stated in the problem. For
example, Prove that for eachin N, 2" > n+ 1. Go ahead and prove
this.

2. Direct Proofs
This is for a statement of the form, “If P, then Q.” The techuggs to
assume P is true and then deduce (this includes showing sheyp€)
is true. For example, Ifiis an even integer, tharf is an even integer.

3. Indirect Proofs - Contrapositive
Given the statement “P implies Q,” itontrapositiveis the logically
equivalent “Not Q implies not P.” Proving this second vensis the
same as proving the first. So we assume not Q is true and dduhice t
not P is true. Try this example, Xy is odd, then eithex or y is odd.

4. Indirect Proofs - Proof by Contradiction
Usually this is something like a proof by contrapositive.véi the
statement “P implies Q,” begin with the idea “P and not Q.” iuke-
duce a statement of the form “R and not R,” this is a contraaficti
Prove with this method that there are infinitely many primes.

5. Proofs involving Quantifiers
Quantifiers are statements of the form “for all” or “therestsi” For
the first, you must take an arbitrary member of this set andeptioe
statement is true always. For the latter, you can exhibitxamgle of
one instance.
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6. Counterexamples (Sometimes can be thought of as “DisprowbIv-
ing Quantifiers)
If you think a “for all” statement is false, the negation obffall”
Is “there exists.” Thus showin@NE instance where the statement is
untrue is enough. On the other hand, one example will not wark
disprove existential statements. One example will not remitt the
existence of something, it just shows the something doegork in
one case. It may still work under other circumstances. Dater the
truthfulness of the statement, “For all rational numbetfsere exists a
rational number —! such that -r—1 =1

7. Finally, how proofs should be written up.

Prove that for any real numbersa and b, a%+ b? > 2ab.

Scratchwork: Ifa? +b? > 2ab, thena? 4+ b® — 2ab > 0. But the left
side is(a— b)2. Your scratchwork should NEVER be turned in, but it
should be used (usually kind of backwards) in your proof.

Proof:
Let a andb be two real numbers. Since every square is non-negative,
we know

(a—b)?>0.

This is equivalent to
a’—2ab+b% >0,

which can be written as
a’+b? > 2ab.
Sincea andb were arbitrary, this holds for all real numberandb.

Notice that this is neither just a list of symbolic manipidas nor
written out in longhand English with paragraph format. A ¢onation
of English and mathematical statements is what is called for

8. More examples for you to prove/disprove:

(a) Prove that ifx andy are positive real numbers and# y, then
X/y+y/x> 2.
(b) For all real numbersa, b, andc

a2 +b%+c®>ab+bc+ac

(c) Prove that 53— 2" is divisible by 3 for any natural number
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Review of Proof Techniques 3

(d) Determine whether the statement, “There exists a realbeux
such that for all real numbeys x+y = Xx.” is true or false.

(e) If a non-negative has the property that < € for all € > 0, then
x=0.
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Chapter 2

Preliminaries

2.1 Notation
e N, Z, Q, andR represent the natural numbers, integers, rational num-
bers, and real numbers, respectively
e ac Ameansais an element (a member) of the get
e A C Bmeans thaf is a subset oB

e AC BmeandAis a subset oB and not equal t® (we sayA is aproper
subset oB)

e AUB means the union ok andB
¢ AN B means the intersection é&fandB
e A\ B means all elements in the sethat are not elments of the 98t

e A® means the complement of the gefwith respect to a known uni-
versal set)

e ) means the empty set

2.2 Fundamentals

Definition 1. A statemenis a sentence that is either true or false.
Definition 2. Anaxiomis a statement that we accept without proof.

Definition 3. A theoremis a proposition proved from other propositions,
definitions, and axioms which are previously known.

Remark 4. We will usually, but not always, write xy for y.

Axiom 5. (Closure Under Addition) If X,y € R, then x+y € R.

4



Preliminaries 5

Axiom 6. (Closure Under Multiplication) If x,y € R, then xye R.
Axiom 7. (Commutativity) If x,y € R, then x+y = y+x and xy= yx.

Axiom 8. (Associativity) If x,y,z € R, then(x+Yy) +z=x+(y+2) and
(xy)z=Xx(y2).

Axiom 9. (Existence of Identities)There exists an elemedt R such that
for all x € R, x+ 0= x and there exists an elemeht R such that for all
XeR,1-x=x.

Remark 10. For any xe R, —x denoteg—1)x.

Axiom 11. (Distributive Laws) If x,y,z € R, then Xy+ z) = xy+ xz and
(Y+ 2)X = yx+ zX.

Prove or Disprove 12. Show that for any x R we have x0=0.

Axiom 13. (Existence of Inverses)or all x € R there exists-x € R such

that x+ (—x) = 0 and for all xc R\ {0} there exists X! € R such that
-1

X-X+=1

Prove or Disprove 14.For real numbers x and y, if x¢ 0, then either x= 0
ory=0.

Axiom 15. If x =y and ze R, then x+ z=y+z and xz=yz.

Exercise 16.Could either form of the axiom above be written as “if and
only if”? Why or why not?

Notation: We define subtraction and division in terms of the inverses of
addition and multiplication, respectively. Thusxfy € R, thenx—y =
x4+ (—y) and ify # 0, thenx+y = x-y 1.

Definition 17. The statement X y is left rigorously undefined, but we will
use it to mean precisely as you have known. The statem€nt means
either x=y or x< y; aslo y> x means the same asxy and y> x means
the same as x y.

Axiom 18. If X,y € R, then either x< y ory<x.

Axiom 19. If x,y € R with both x< 'y and y< x, then x=y.
Axiom 20. (Transitivity) If x <y and y< z, then < z.
Axiom 21. If x <y and ze R, then x+ z<y+z.

Axiom 22. If x <y and z> 0, then xz< yz.

Prove or Disprove 23.1f x <y, then—y < —x.

Prove or Disprove 24.1f x <y and z< 0, then yz< xz.
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Preliminaries 6

Prove or Disprove 25.1f x,y > 0, then xy> 0.

Prove or Disprove 26.For all x € R, x2 > 0.

Prove or Disprove 27.If x > 0, then x1 > 0.

Prove or Disprove 28.1f 0 < x <y, then0 <yt < x~1.

Remark 29. Each of the true properties we have looked at so far are true for
the setQ. This brings up the question of how the real numbers arerdiite
from the rational numbers and why that difference is impartdinat is the
topic we shall now delve into.

We begin with a seBwhich is a subset dR.

Definition 30. (Upper Bound)If there exists a real number M such that for
all x € S we know xX M, then M is an upper bound for S.

Definition 31. (Supremum, Least Upper Bound)If there exists an € R
such that s is an upper bound for S and, for any upper bounds &} ofe
have s< M. then we call s the supremum of S (also called a least upper
bound) and denote this lBugS).

Remark 32. Define the analogous concepts of lower bound and infimum
(greatest lower bound), writteinf(S).

Remark 33. When a set S is bounded abaed bounded below, we say
that the set S is bounded.

Axiom 34. (Completeness Axiom) et SC R be nonempty and bounded
above, thersupS) exists.

Prove or Disprove 35.Prove that for any bounded set S, there is only one
supremum; that is, suprema are unique.

Prove or Disprove 36. Show that the Completeness Axiom does not hold
whenR is replaced byQ.

Prove or Disprove 37.Let SC R be nonempty and bounded below. Then
inf(S) exists.

Prove or Disprove 38.Let A and B be nonempty sets subset® afuch
that AC B. If B is bounded above, then A is bounded abovesamiA) <
supB).

Remark 39. What is the analogous problem and answer for bounded below
and infima?

Prove or Disprove 40.Let A and B be nonempty subsetsRof If A is a
proper subset of B, thesupg/A) < sup(B).
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Prove or Disprove 41.1f A and B are nonempty subsetsi®such that for
all x € A and for all ye B, x<'y, thensupgA) < inf(B).

Remark 42. The set of real number®Rj naturally decomposes into two
pieces: the rational number§)j and the irrational numbersR \ Q which is
sometimes written ds but we will not be using that). So let us look at some
of the properties of this decomposition. We begin with théhiredean
Property which is actually about the real numbers, not judiamals or
irrationals. Some texts use the Archimedean Property axema This will

be presented as a Theorem (for you to prove) here as it is eecuesce of
the Completeness Axiom despite the two looking very different

Theorem 43. (The Archimedean Property ofR) For all positive xy € R
there exists a natural number n such thatay.

Prove or Disprove 44. (Denseness of the Rational Number§uppose
X,y € Rwithx<y. Thereisa z Q suchthat x z<y.

Prove or Disprove 45. (Denseness of the Irrational Numbers$uppose
that xy € Rwith x<y. Thereisaz R\ Q suchthat x z<y.

Prove or Disprove 46.The sum (difference) of any two rational numbers is
a rational number.

Prove or Disprove 47.Ifr € Q and ze R\ Q, thenr+ze€ R\ Q.
Prove or Disprove 48.Ifr € Q and ze R\ Q, then rze R\ Q.
Prove or Disprove 49.1f x,y € Q, then(x+y)/2 € Q.

Prove or Disprove 50.1f x,y € R\ Q, then(x+y)/2 € R\ Q.

Definition 51. Consider st € R with s<t. Aninterval | is a subset d& of
any one of the following forms:

st] = {xeR|s<x<t}
(st) = {xeR|s<x<t}
(st] = {xeR|s<x<t}
[s,t) = {xeR|s<x<t}
[s,0) = {xeR|s<x}
(s;0) = {xeR|s<x}
(—oo,t] = {xeR|x<t}

(—oo,t) = {xeRx<t}

Also considered intervals alfe-o, ) =R and0 (which is called an empty
interval). For some authors the singletda} = [a,a] is referred to as a
degeneratenterval. We will not bother with a single point as an interval.

Prove or Disprove 52.The union of a collection of intervals will also be an
interval.
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Prove or Disprove 53.The intersection of a collection of intervals will also
be an interval.

Definition 54. A nonempty collection of intervals dre called nestedif
222D,

Prove or Disprove 55. The intersection or union of nested intervals is an
interval.

Remark 56. To show the distance between two points on the number line
we typically use the absolute value function. Although we Inateet ac-
tually defined a function explicitly, you do have an intgtidea of what a
function is and how functions work, and a large repertoire xdiraples at
your disposal, so everything should work smoothly.

Definition 57. Let xe R. Then the absolute value of x, denoted/Xyis

given by
X ifx>0
|X|:\/X_:{ —X ifx<0

This is sometimes referred to as the Euclidean distancedestwo
points and can generalize tedimensions. X = (X1,X2,...,X,) andy =

(Y1,¥2,---,Yn), then
n
d(xy) =/ Y (—Yi)*
K=1

Prove or Disprove 58. |xy| = |X| |y

Prove or Disprove 59. For any two real numbers x and {x—y| = |y — X|.
Prove or Disprove 60. (The Triangle Inequality) [x+Yy| < [x| + ||
Prove or Disprove 61.||x| — |y|| < [x—Y|

‘Prove|> or Disprove 62.Let xy € R. Then x=y if and only if for alle > O,
X—Yy| <E€.

Remark 63. Using absolute value to find the distance between points on
the number line is a specific example of a more general ideafohetion
which defines distance between points on a set S. Such a fuisatialied a
metricon S. We look at this more closely throughout this courseorBgfou
read the definition below, you might want to take a minute amktabout
what you think defines a distance function.

Definition 64. (Metric) A metric (distance function) on a set S is a function
d which satisfies the following three properties:
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1. Forallx,ye S, dx,y) > 0 (called nonnegativity) and(e,y) = 0 if and
only if x=y.

2. Forallx,y e S, dx,y) =d(y,x) (symmetry)
3. Forallx,y,ze S, dx,y) < d(x,z) +d(zy) (The Triangle Inequality)

(Convince yourself that these are all satisfied byonR.)

Prove or Disprove 65. The function

[0 ifx=y
d(x,y)_{ 1 ifx#£y

is a metric on any nonempty set S. This is calleddiserete metric

Prove or Disprove 66.Let z= (21,2) € R? represent points in the plane.
The function given bgi(x,y) = |x; —y1| + %2 — Y2| is @ metric onR?.

Prove or Disprove 67.The function Bx,y) = 1—2~*Y) is a metric orR.

Exercise 68.To look at how different ideas of distance make for dissimila
results, look at the plane with two different metrics, the Elean metric

d(x,y) = \/(Xl —X2)2+ (y1—Y2)?

and the so-called taxicab metrid, above. The unit circle is the set of all
points whose distance from the origin is 1 unit. So draw theo@bints
where dx,0) = 1 and the set of points whetix,0) = 1 and see how they
are different circles.
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Chapter 3

Sequences and Limits

Definition 69. A sequence is a function f with domainand rangeR.

Remark 70. The usual notation for a sequence is to Igt=xf(n) and to
write the sequencexy, X2, X3, . ..) asX = (Xn)p_q OF (Xn).

Definition 71. (Convergent Sequencejhe sequencex,) converges to the
real number L, if for every real number> 0 there exists a natural number
N such that for all > N we have

Xn—L| < €.
This is written as
n—-oco

or oftentimes x — L When such an L exists we sé¥,) is a convergent
sequence.

Remark 72. The intuitive, but incorrect, way many people think of a se-
guence converging to L is, “As n gets bigger and bigger, ttie get closer
and closer to L Our definition makes the concept rigorousithVit we

see explicitly the relationship between n and “closer to LijeSifically, for
eache, we will have a formula to determine N so we are guaranteed that if
n > N, then x will be within € of L.

Theorem 73.1f X, — a and x — b, then a=b.

Remark 74. Theorem 73 shows that if a sequence does converge to a limit,
then the limit must be unique. Showing that an object is unigw@every
typical problem in upper-level mathematics.

Definition 75. (Divergent Sequencef sequence which does not converge
is said to diverge. Note this can happen in several ways. Déterthe
negation of the definition of convergence for a formal de@initve use when
the limit does not exist.

10



Sequences and Limits 11

Remark 76. There is also the possibility that thien x, exists, but it is not
finite. We sayimp_.. X, = o if for every Me R there exists a natural num-
ber N such that if B> N, then x > M. Formulate the analogous definition
for limp_e Xp = —0o0.

Example 77. Prove thatimp ;e 71 = 1.

Proof:

Let e > O be given. For thi€ define Ne Nso N> 1/¢. Then if n> N we
have

Xn—Ll=|—-1l=——<<=-<-—=¢
X —L| n+1 n+1<n<N<1/s

Since thiss was arbitrary, we have shown that for &l> O there is a way
to find an N, depending only an so that for n> N we havex, —L| < €

and thus;%; converges td.

n 1‘ 1 1 1 1

Note: All of the scratch work was left out of the proof. The sdratork is
where we find the relationship betweerand N. This is done by starting
with |x, — L|, simplifying that expression down to one involving N and then
settingthatless thans and solving for N. The scratch work then shows up
as the offset line in the proof.

Exercise 78.Write a formal proof for each of the following:

__1
1. X = R

converges t®.
2. ynh = cognm) diverges
3.%=(4/3)" >
Definition 79. Let x and y be sequences aode R. Then we define the
following sequences:
Xty = (XEyLXetyz...)
ax = (axy,axy,...)
Xy = (Xay1,Xey2,--.)
Prove or Disprove 80.If x andy are convergent sequences, theny is a
convergent sequence.

Prove or Disprove 81.If x is a convergent sequence, then sariswhere
acR.

Prove or Disprove 82.If x is a convergent sequence, then sdljx =
(1/%n)p-1-

Theorem 83. (Squeeze Theorenm)etx, y, andz be sequences and &N
sothatx — L, z,— L, and forn> N

Xn < Yn < Zn.
Theny — L.
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Definition 84. We say a sequenceis boundedif there exists numbers m
and M such that for all re N

m<x; <M.

Exercise 85.Come up with corresponding definitions foounded above
andbounded belowGive an example of a sequence which is bounded above
but is not bounded. Do the same for bounded below, but notdeziin

Prove or Disprove 86.If (x,) converges then it is bounded.

Definition 87. Let x be a bounded sequence. Define sequefggsand
(vn) by, forallNe N
un =inf{x,:n> N}

and
VN = Sup{X, : n> N}.

Prove or Disprove 88.If x is a bounded sequence, thimy_,. uy and
lIMp_o VN EXISES.

Definition 89. (Limit Superior and Limit Inferior) Letx be a bounded
sequence and I¢tiy) and(vy) be defined as above. Define thmit inferior
andlimit superiorof x, denoted byiminf x, andlimsupx,, respectively, as

liminfx, = lim un
N—o00
and

limsupx, = lim wy.
N— 00

Exercise 90.Find theliminf x, andlim supx, for each of the following se-
guences:

1 %= (-1)"
2. % =e"

Prove or Disprove 91.If limp_.X, exists and is finite, then liMSyP«Xn
andliminf,_.. X exist and are finite.

Prove or Disprove 92.If both limsup,_,«xn, andliminf,,_,. X, exist and are
finite, then lim_Xn exists and is finite.

Definition 93. (Cauchy SequenceA sequencex,) of real numbers is
called aCauchysequence if for everg > 0 there exists a natural number
N so that if n> m> N, then

[Xn — Xm| < €.

Exercise 94.Show thatx,) = (1/n) is a Cauchy sequence.
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Prove or Disprove 95. Every Cauchy sequence is a bounded sequence.

Prove or Disprove 96.If (x,) is a convergent sequence of real numbers,
then(x,) is a Cauchy sequence of real numbers.

Prove or Disprove 97.Every convergent sequence is a bounded sequence.

Remark 98. In the real line, every Cauchy sequence converges to a real
number which is whyR is called a “complete metric space.” This is again
the difference between the spag@andR. This is equivalent to the Com-
pleteness Axiom and from where the name comes. This is amekjren-
portant property. One issue with tlege— L definition of convergence is one
must know the value of the limit before proving anything. ©ae show
Cauchy without knowing the end result.

Exercise 99.Give an example of a sequencejmwith the Euclidean metric
(recall Exercise 68) that does not converge to a rational ham (This
shows thatQ with the Euclidean metric is not complete, wher&asvith
the same metric is complete.)

Remark 100. Sometimes we are interested in not all of the terms of the
sequence, but only some of them (infinitely many of them).

Definition 101. A subsequencis a sequence whose terms consist of some
of the terms ofxy) takenin order. The usual notation is to write our subse-
quence as

(Xnk) — Xn17Xn2;Xn37 cee
where n denotes the subscript of the first term taken froq), n, denotes
the second term taken fro(w,), et cetera. Notice that for the value af n
we must haveyr> k.

Exercise 102.Give five different subsequences for the sequéha®.

Prove or Disprove 103.If (xn) converges then, for any subsequefe)
the subsequence converges and the limits are the same.

Prove or Disprove 104.If (x,) diverges, then, for any subsequerigg, )
the subsequence also diverges.

Definition 105. Let x = (X,) be a sequence. A tail of the sequence is a
subsequence of the forfx,),_, for some ke N.

Many of the results we have can be phrased in terms of tailseofeé-
quence.

Theorem 106. Let x be a sequence and € R. Then the following are
equivalent:

1.x—1L,
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2. for every ke N, the tail (x,1k) converges to L,
3. there exists k N such that the tai(x, k) converges to L.

Remark 107. To prove a theorem which states multiple ideas are equiva-
lent one does not need to prove “if an only if” for each pair adgsible
matchups. Instead, one can prove “circularly”. For exampfehere were
four statements A, B, C, and D, a proof could be to show equicalgia

A=B=D=C=A.

Definition 108. Let {x,} be a bounded sequence of real numberssub-
sequential limitis any real number x such that there exists a subsequence
{Xn, } that converges to x.

Exercise 109 Find the set of subsequential limits(ef,) where x = cog ).

Prove or Disprove 110.There is no sequence whose set of subsequential
limits is{1/n: ne N}.

Definition 111. A sequence is calledincreasing(decreasinygif for every
natural number n we have, X< X,+1 (Xn > Xnr1). If instead of an ordinary
inequality it is a strict inequality, then we refer to the seque as strictly
increasing (strictly decreasing). In either case, we reex ais monotonic.

Remark 112. If a tail of a sequence is increasing (decreasing) we say the
sequence isventually increasin@eventually decreasing

Prove or Disprove 113.If a sequence is eventually increasing and bounded,
then the sequence converges.

Exercise 114.Let xx =1 and %.1 = X“ + =. Prove thatx converges and
find its limit. (Hint: this problem uses a Iot of induction.)

Prove or Disprove 115.Every sequence has a monotone subsequence.

Theorem 116. (Bolzano - Weierstrass Theorem) Every bounded sequence
has a convergent subsequence.

Definition 117. The ideas of convergent sequence and Cauchy sequence
generalize to any metric space. Given a space X with metric dayehe
sequence of pointg,)e X

1. converges to k X if for everye > 0 there exists a natural number N
so that if n> N, then dxn,L) < €.

2. is Cauchy in X if for everg > 0O there exists a natural number N so
that if n,m> N, then dxn,Xm) < €.

Remark 118. Look at these and the definitions you have for convergent and
Cauchy inR. Understand how they are saying the same thing whenlX
and d is Euclidean distance.
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Prove or Disprove 119.Let the space X be the real numbers with the “dis-

crete metric” .
|0 ifx=y
dey) = { 1 ifx#y

There is no such thing as a convergent sequence here.
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Chapter 4

Functions and Continuity

We begin with the most general definition of a function.

Definition 120. A function f from XC RtoY C R is a set of ordered pairs
(x,y) in the Cartesian product X Y for which each x X is the first coor-
dinate in exactly one ordered pair. We write this asX¥ — Y and say that
fmaps XtoY.

Remark 121. We will adopt the standard functional notatiofixj to repre-
sent the value of y ifx,y) € f. The domain of f, denoted d@fi), is X and
the range of f, denoted raf), is the sefy € Y| there exists an x X with
f(x) =y}. We say f maps X into itself if ¥ X.

Remark 122. Although domains are important, we will mostly write f
rather than f: X — Y and assume that unless stated otherwise f has as
large a domain as possible, usualty

Remark 123. Let f and g be functions and€R. We assume the reader
is familiar with the definitions and properties of the funasmamed f+g,
fg, f/g, fogandcf.

Remark 124. The elementary trigopnometric, exponential, and logarithm
functions, and their respective properties, are assumed.

Some additional terminology for functions include

e f is calledone-to-onesometimes abbreviated-11, if for everyx, x €
X, x# X implies f(x) # f(X).

e f is calledontoif for everyy €Y there exists ar € X such thatf (x) =
y.
o f is called a bijection if it is both one-to-one and onto.

For now we shall restrict ourselves to functionsin
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Exercise 125.Give an example of a function which is

1. one-to-one, but not onto

2. onto, but not one-to-one

3. neither one-to-one, nor onto
4. a bijection

Definition 126. (Limit of a Function) Let XC R and f: X — R. We say
the limit of f asx approachegg is L if for everye > 0O there exists & > 0
so that if xe X and0 < [x—Xp| < 9, then|f(x) —L| < €. Notationally, we
write this as

lim f(x) =L.

X—Xo

Example 127. Prove thatlimy_,»x3 = 8.

Proof: Lete > 0. For thise, letd = min{1,&/19}. Then if[x—2| < d we
have

C—8|=|x—2| }P+2x+4| <19-[x—2| <195 < 19-£/19=¢

Sinces was arbitrary, this works for any positive epsilon and thiongl,, x3 =
8.

Exercise 128.Show thatim,_,3x% = 9.

Exercise 129.The part which read® < |x— Xo| is important. Why do we
not let|x— Xp| be zero?

Prove or Disprove 130.If limy_x, f(x) = L andlimy_.x,9(x) = K, then

Jmo(f +0)(x) =L£K.

Definition 131. (Continuity of a Function) Let X C R. A function f: X —

R is continuous at a pointydf for everye > 0 there exists & > 0 such that
for all x € X with [x—Xg| < & we have

(%) - f(x0)| <e.

Note: this is continuityat a point
We say f is a continuous function if it is continuous at everntag € X.

Remark 132. The definitions of continuous a§ &nd the limit at ¥ look
almost identical, but are not. It's important to see theat#ince and under-
stand why they are not the same.

Exercise 133.Show that {x) = 3x+ 2 is continuous at x= 1.

Exercise 134.Show that {x) = 3x+ 2 is a continuous function.
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Exercise 135.Show that fx) = x? is a continuous function.

Prove or Disprove 136.Let ce R. If f : X — Y is continuous atgs then
cf is continuous atx

Prove or Disprove 137.1f f : X — Y is continuous atg then| f| is contin-
uous at .

Remark 138. A function is bounded if its range is a bounded seRinin
other words, f is bounded if there existivhe R such that

m< f(x) <M
for all x in the domain of f.

Theorem 139.1f f : X — Y is continuous atg then there is an interval |
containing X so that f(x) is bounded on I.

Prove or Disprove 140.1f f : X —Y and g X — Y are continuous atgx
then

1. f+g
2. fg

3. f/g

are continuous at

Remark 141. There is another definition of continuous which is equivalent
to the ordinary definition for real functions. This one wés sequences
and while it is sometimes difficult to use for positive res(itiat is proving
continuity) it works very well for negative results.

Definition 142. Let DC R. A function F: D — R is continuous at a point
x if for every sequenceq) C D such that x converges to x we have

f(xn) converges to ().

Exercise 143.Write the negation of Definition 142 to see how to use it to
prove the function f is not continuous at the point x.

Prove or Disprove 144.1fg: U — V is continuous atg and f:V — R is
continuous at y= g(xp), then fog:U — R is continuous at x

Exercise 145.Let

sin(1/x) ifx#0
f(x) =
0 ifx=0

Prove that f isnotcontinuous ab.
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Definition 146. Let | be an open interval, lefp€ |, and let f be a function
defined on | (except possibly af)xThen

1. f has gump discontinuityat g if the one-sided limits of f exist agx
but are not equal.

2. f has aremovable discontinuitat X if limy_,x, f(X) exists, but {x)
either does not exist or has a value different from the limit.

{ X1 ifx£1

a ifx=1

Exercise 147.Let

F(x) =

Determine the value of a so that F is continuous at .

Remark 148. The next two theorems and the subsequent problems lead to
many applications of continuity.

Theorem 149. (Intermediate Value TheoremBSuppose that f[a,b] — R

is continuous onja, b]. If v is a number between(d) and f(b), then there
is a point ce (a,b) such that fc) = v. (Hint: Assume fa) < v < f(b) and

look at S= {x € [a,b]| f(X) < V}.)

Remark 150. For awhile it was thought that a function having this Inter-
mediate Value Property was the same as a continuous funclibis was
disproved by (among others) Gaston Darboux. Nowadays, furtivith
the Intermediate Value Property are called Darboux Funasio

Theorem 151. (Extreme Value Theorem)f f : [a.b] — R is continuous on
[a,b], then there exist points ¢ and d [& b] such that fc) < f(x) < f(d)
for all x € [a,b.

Exercise 152.1f g : R — R is continuous onia, b], with g(a) - g(b) < 0, then
there exists a value& [a,b] such that gr) = 0.

Definition 153. Let f: D — R be a function and let | be an interval for
which I C D. Then the image of | under f is given by

f(l)y={f(x)|xel}.

Prove or Disprove 154.If f is continuous and nonconstant on the interval
I, then f(1) is an interval.

Definition 155. A function f is increasing (strictly increasing) on the inte
val (a,b) if for all x,y € (a,b) with x < y we have {x) < f(y) (f(x) < f(y)).
Decreasing and strictly decreasing are similarly defined. fuAction is
called monotoneon (a,b) if it is either increasing on(a,b) or decreasing
on (a,b).
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Definition 156. A function f: R — R is calledsymmetricat X if
lim [f(xo+h)+ f(xo—h)—2f(Xp)] = 0.
h—0t

Prove or Disprove 157.If f is continuous at ¥ then f is symmetric afpx
Prove or Disprove 158.If f is symmetric at i then f is continuous afyx
Definition 159. LetDC R and f: D — R. We say f isiniformly continuous
if for every € > 0 there exists & > 0 such that for every )y € D with
IX—y| < & we have

[0 —f(y)l <e.

Remark 160. Note how this differs from ordinary continuity. Then we fix x
and ¢ and then find; that is, concentrating on one point we see how close
the x’s have to be in order for the(f)’s to be a prescribed distance away.
For uniform continuity we have when the x’s are close, tlie)'s are the
given distance apart for all points.

Prove or Disprove 161. f(x) = 3x+ 2is a uniformly continuous function.
Prove or Disprove 162. f (x) = x? is a uniformly continuous function.

Theorem 163.1f f is continuous on the closed intervd, b, then f is
uniformly continuous ofe, bJ.

Exercise 164.Show the theorem above is not true if we replécé| with
(ab).

Exercise 165.Show that f: [1,00) — R given by {x) = /X is uniformly
continuous.

Theorem 166.If f is uniformly continuous on the intervgh, c| and f is
uniformly continuous on the intervid, b, then f is uniformly continuous
on|[a,b].

Prove or Disprove 167.If f is uniformly continuous on the intervé, c)
and f is uniformly continuous on the interv, b], then f is uniformly
continuous ona, b.

Theorem 168.1f f : [0,00) — R is continuous o0, «) and uniformly con-
tinuous onlk, «) for some k> 0, then f is uniformly continuous g0, «).

Definition 169. Let XC R and let{ f,} and f be real functions with domain
X. We say f converges pointwise to f if for each & X we have

lim fa(%0) = f (%)

that is, for every x € X and every > 0 there exists an Nt N such that for
n> N
[ fn(X0) — f(x0)[ < €.

We write this as nf—p> f.
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Exercise 170.Define f,: [-1,1] — R by
fn(x) = cognx)/v/n

Determine the pointwise limit of, f

Exercise 171.Define f: [0,0) — R by f,(x) = %;n Find the pointwise
limit of f,.

Exercise 172.Let {r,} be an ordering of the rational numbers. Define

fn:R— R by )
] 1 x=r,k<n
fn(x) = { 0 otherwise

Determine the pointwise limit of, f

Prove or Disprove 173.The pointwise limit of a sequence of continuous
functions is a continuous function.

Definition 174. Let XC R and let{ f,} and f be real functions with domain
X. We say f converges uniformly to f if for every > 0O there exists and
N € N such that if >~ N we have

[fa(x) — f(X)| < €
for all x € X. We denote this by
fo — f.
Prove or Disprove 175.The uniform limit of continuous functions is a con-
tinuous function.

Remark 176. As usual, our concentration is in the real line. These defini-
tions we have, though, do not depend on the domain and coddreaig

R. Here is a generalization of th&— ¢ definition to any metric space along
with an example.

Definition 177. Start with metric spaceéS,d) and (S,d*). A function
f : S— S"is continuous atge S if for everye > 0 there exists & > 0 such
that

d(so,S) < 0 implies d'(f(sg), f(s)) < €.

Remark 178. Look back at the definition of continuity and see how this
metric space definition is the same, but different.

Let S= {(xn) : (Xn) is @ bounded sequencand define distance between
points in this space by

d((%n), (Yn)) = sup{[Xn — Y|}

The functionF : S— S called the left shift operator, is given By(x,) =
(X2,X3, .. )
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Prove or Disprove 179.The left shift operator is continuous.

Remark 180. The sequence definition also exists in general metric spaces
and is again helpful in showing something is discontinuoues @bint.

Definition 181. Start with metric spaceéS d) and (S,d*). A function
f : S— S"is continuous atge S if for every sequends,) in S converging
to g we have

f(sn) = f(s0)

in (S, d").
Prove or Disprove 182.The function f R? — R given by
2xy
f(X, y) _ ;2+_y2' (X7 y) 7A (07 O)
0 otherwise
is discontinuous at th0, 0).

Remark 183. This function is from the study skparate versus joint con-
tinuity. One of many types of generalized continuity currently dpea:
searched.
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