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To the Student

Analysis is an area of mathematics, just as Algebra, Gegmeetd Topol-
ogy are areas of mathematics, and is usually defined heatigtior not

at all. In your calculus sequence you learned about the dapiidimits,

continuity, differentiability, and integration at an iottuctory level. In this
course, we will follow the same order that you followed inatdiis, but we
will spend more time on the mathematical structures thatempplication
of the concepts. We will define each concept rigorously ardemt material
that you will recognize from calculus such as the Extremei®alheorem,
Mean Value Theorem, Rolle’s Theorem, and the Fundamen&brEm of
Calculus. From here, we will explore the notions of uniforomtnuity, uni-

form convergence, the existence and uniqueness of sodutibodifferential

equations, and a bit of measure theory.

These notes are intended to be virtually self-containet, assuming
basic understanding of the real numbers. If you work thraigtfirst fifty
problems independently, then you have mastered the togiertbst univer-
sities would cover in a course titled “Real Analysis” or “Aahced Calcu-
lus.” Universities typically offer such a course after aafisitional” course
intended to move students away from working problems andrtow theo-
retical viewpoint of the subject.

The goal is to solve all the statements labeled as “Probleffiseo-
rems,” or “Lemmas.” The titles don’t necessarily repregéetlevel of dif-
ficulty because the real work in proving a theorem may have deee in a
lemma or problem. A handful of the problems or theorems dveléa with
(CA) which implies they require the use of the Completenessii.

The remainder of this introduction is important only to tedaking the
course from me for credit.

Allwork presented or submitted is to be your own. Youmaogto discuss
any problem with any one other than me, nor are you to look yocdiner
reference such as a book or the internet for further guidance

Grading for the course will be no less than the average oétgrades:
your presentation grade, your submission grade, and thageef your



To the Student

midterm and final exam grades. Anyone who is regularly prasgma-
terial at the board will certainly have adequate work for dg@abmission
grades and thus will likely do well on the midterm and final.eThidterm
and final grades are opportunities for those who do not regutaake it to
the board. However, it is my experience that those who do ok voward
successful presentations rarely do well on the midterm aral. fiThus, |
emphasize that thgoal of the course for each student should be well pre-
pared, well presented problems at the board. You will knowrygades on
submissions and tests. My policy for your presentation grad

D = the student made it to class every day, was attentive &n ahd
his or her cell phone never rang

C =requirements for D plus made a few successful presengatio
B = requirements for C plus made numerous successful pedssrg

A =requirements for B plus presented some truly impressioblpms

Turn-ins. You must turn in exactly one “new” problem each ke@
“new” problem means one that you havetturned in before. This problem
should be neatly written and double spaced. You should kiteproblem
with TURN IN at the top of the page along with your name, thelbem
number and the problem statement.

Grading for TURN IN assignments will be based on the folloyvatale.

A = This is a correct proof.

B = You know how to prove the theorem but some of what you have
written is not correct.

C = You have a mistake in your work or | do not understand what yo
have written, but | believe you have a good idea.

D = There is at least one major flaw in your argument.

Please understand that the purpose of the TURN IN assigsnsei
teachyou to prove theorems. It is not expected that you startedtldmees
with this skill; hence, some low grades are to be expectedn@de upset
- just come see me.

Resubmissions. If you receive a grade of less than B, you esajpmit a
TURN IN problem on the following week and | will average theotgrades.
You still must turn in a new problem as well and you only get chance
to resubmit. Please write RESUBMIT at the top. Feel free tnesee me
anytime if you do not understand my comments. It is expedtatia certain
amount of time in my office will be required to help studentgtdfer to give
guidance in my office rather than in class because this alioe/go tailor
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To the Student

the hints to the person who needs help, but | will always answestions
in class as well.

Boardwork. If you have solved a problem that is about to begmeed
at the boardr you feel you have made significant progress on a problem
that is about to be presented then you may opt to leave the foothe
presentation. In this case, you may turn in a write up of thabfem for
credit as BOARD WORK. You must write BOARD WORK at the top of
the page. There is no limit on the number of BOARD WORK proldgmu
can submit.

Last Comments. Be sure that everything you turn in has yoorena
problem number, and problem statement on it. Be sure to d@agace and
write either TURN IN, RESUBMIT, or BOARD WORK at the top.

| reserve the right to vary from these policies and probablly w
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Chapter 1

Limit Points and Sequences

You will find undefined words in these notes sucltakection elementin,
memberandnumber We assume that you have an intuitive understanding
of these words and an intuitive understanding of the algabsaciated with
the real numbers.

Definition 1. By apoint is meant an element of the real numbéRs,
Definition 2. By apoint setis meant a collection of one or more points.

Definition 3. The statement that the point set Mirsearly ordered means
that there is a meaning for the words “less than” and “greatean” so that
if each of a, b, and c is in M, then

1. ifa< band b< cthena<cand
2. one and only one of the following is true:

. a<b,
ii. b<a,or
ii. a=Dh.
Axiom 1. R is linearly ordered.

Axiom 2. If pis a point, then there is a point less than p and a point tgea
than p.

When we refer to “two points,” we adhere to standard usagbetn-
glish language and thus imply that they are not the same.geanexample,
if you went to “two stores” we would not assume that you viditee same
store twice. On the other hand if we were to write, “let each ahdb be a
point” then it would be possible thatis the same point ds

Axiom 3. If p and g are two points then there is a point between them, for
example(p+q)/2.
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Axiom 4. Ifa < b and c is any point, then-ac < b+c.
Axiom 5. Ifa<bandc>0,thenac<b-c.Ifc<0,thenac>b-c.

Axiom 6. If x is a point, then x is an integer or there is an integer n such
thatn<x<n+1

Definition 4. The statement that the point set O is@en interval means
that there are two points a and b such that O is the set congigif all
points between a and b.

Definition 5. The statement that the point set | i€lased intervalmeans
that there are two points a and b such that | is the set comgjsif the points
a and b and all points between a and b.

In set notation,
(a,b) = {x: xis a pointanda < x < b}
and
[a,b] = {x: xis a point anch < x < b}.
We do not uséa,b) or [a,b] in the casea = b, although many mathemati-
cians and texts do. We refer &andb as theendpointsof the interval.

Definition 6. If M is a point set and p is a point, the statement that p is a
limit point of the point set M means thaveryopen interval containing p
contains a point of M different from p.

Problem 1. Show that if M is the open intervéd, b), and pisin M, then p
is a limit point of M.

Problem 2. Show that if M is the closed intervi, b], and p is not in M,
then p is not a limit point of M.

Problem 3. Show that if M is a point set having a limit point, then M con-
tains 2 points. Must M contain 3 points? 4 points?

Problem 4. Show that if M is the set of all positive integers, then no poin
is a limit point of M.

Problem 5. Assume Mis a point set and p is a point of M. Create a definition
for “g is the first point to the left of p in M” by completing thelfowing. “If
M is a point set and p is a pointin M..”

Problem 6. Assume M is a point set such that if p is a point of M, there is
a first point to the left of p in M and a first point to the right ofrpM. Is it
true that M cannot have a limit point?

Definition 7. If each of A and B is a set, then the set defined loyian B
is the set consisting of all elements that are in A orin B
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Limit Points and Sequences

Definition 8. If each of A and B are sets, then the set defined yeksec-
tion B is the set consisting of all elements that are in A and.in B

If M is a set andnis a point then the notatiom € M translates as “m
is in M.” AUB is written in set notation a&UB = {x|x € Aorx € B} and
ANB is written in set notation a&N B = {x|x € Aandx € B}.

Problem 7. Show that if H is a point set and K is a point set and p is a limit
point of HNK, then p is a limit point of H and p is a limit point of K.

Problem 8. Show thatif H is a point set and K is a point set and every point
of H is a limit point of K and p is a limit point of H, then p is a linpoint
of K.

Problem 9. If H is a point set and K is a point set and p is a limit point of
H UK, then p is a limit point of H or p is a limit point of K.

Problem 10. Show that if M is the set of all reciprocals of positive intege
thenO (zero) is a limit point of M.

Up until now, the wordpoint has meant a real number. From here for-
ward, it may also be used to mean an ordered pair of real nanber a
point in the plane.

Definition 9. The statement that f isfanction means that f is a collection
of points in the plane, no two of which have the same first aoatds.

Definition 10. If f is a function, then by thdomain of f is meant the point
set of all first coordinates of the ordered pairs in f, and bg thinge of f is
meant the set of all second coordinates of the ordered paifs i

We use the usual notation that fifif a function andx is a number in
the domain off, thenf (x) is the number which is the"? coordinate of the
point of f whose # coordinate i.

Definition 11. A sequence is a function with domain the natural numbers
and with range a subset of real numbers.

If pis a sequence, thepm= {(1,p(1)),(2,p(2)),(3,p(3)),...}. Since
writing p this way is cumbersome and the domain is always the natunal nu
bers, we will denote sequences by listing only the pointb@&range of the
sequencep(1), p(2), p(3),.... We'll further abbreviate this ags, p2, ps, - - - -
The set{p; : i = 1,2,3,...} denotes the range of the sequence. That is,
{pi:1=1,2,3,...} denotes the point set to which the poirielongs if and
only if there is a positive integersuch thak = py.

Definition 12. The statement that the point sequengepp, ... converges
to the point x means that if S is an open interval containing x then there is a
positive integer N such that if n is a positive integer and N then p, € S.

W. Ted Mahaviex W. S. Mahavier www.jiblm.org
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Definition 13. The statement that the sequence , ps,... converges
means that there is a point x such that pp, ps, ... converges to x.

Problem 11. For each positive integer n, letyp= 1—1/n. Show that the
sequence P pz, ps, ... converges td.

Problem 12. For each positive integer n, letopp 1 = 1/(2n— 1) and let
p2n = 1+ 1/2n. Does the sequenca,p,, ps, ... converge to 0?

Problem 13. For each positive integer n, letop=1/(2n— 1), and let
p2n—1 = 1/2n. Show that the sequence, p2, ps, ... converges t@.

Problem 14. Show that if the sequence,|p», ps, ... converges to the point
X, and, for each positive integer ny ¢ pnr1, then x is a limit point of the
set which is the range of the sequence.

Problem 15. Show that if p£ O, then p is not a limit point of the set
{1,3.5....}.
Problem 16. Show that if ¢ is a number and; o, p3, ... iS a sequence

which converges to the point x, then the sequengg,c- p2,c- ps,... con-
verges to ¢x.

Problem 17. Show that if the sequence,p2, p3,... converges to x and
the sequenceqop, s, ... converges to y, then the sequengeHm, p2 +
02, P3 + 03, ... converges to x-y.

Definition 14. The statement that p is tH&st point to the right of the
point set M means that p is greater than every point of M and if q is a point
less than p, then g is not greater than every point of M.

Definition 15. The statement that p is thrgght-most point of M means
that p is in M and no point of M is greater than p.

Problem 18. Show that if M is a point set, then there cannot be both a
right-most point of M and a first point to the right of.M

Problem 19. Show that if M is a point set and there is a point p which is
the first point to the right of M, then p is a limit point of M.

Theorem 1. If the sequenceppz, p3... converges to the point x and y is
a point different from x, thenippo, p3, ... does not converge to y.

Definition 16. The statement that the point set Miidite means that there
is a positive integer n such that M contains n points but M dussontain
n+ 1 points.

Definition 17. The statement that the point set Minginite means that M
is not finite.

Theorem 2. If M is a finite point set, then M has a right-most point and a
left-most point.
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Limit Points and Sequences

Theorem 3. If the point p is a limit point of the point set M and S is an open
interval containing p, then SM is infinite.

Theorem 4. If the sequenceppz, P3, ... converges to the point x and y is
a point different from x, then y is not a limit point ¢p; : i =1,2,3,...},
the range of the sequence.

Definition 18. If A and B are point sets, then we say that A sudsetof B
if every point of A is also a point of. Bhis is typically denoted by & B.

Definition 19. The statement that the point set M is@enpoint set means
that for every point p of M there is an open interval which @ans$ p and is
a subset of M.

Definition 20. The statement that the point set M islasedpoint set means
that if p is a limit point of M, then p isin M.

Note that if a seM has no limit point, then it is a closed point set. We
could equivalently define closed by saying thais closed if, and only if,
there is no limit point oM that is not inM.

Theorem 5. If M is a closed point set and M is not all points, then the set
of all points not in M is an open point set.

Theorem 6. If M is an open point set, then the set of all points notin M is
a closed point set.

Theorem 7.1f pis a point, there is a sequence of openinterval$Sg S, . ..
each containing p such that for each positive integeris & S,, and p is
the only point that is in every open interval in the sequence.

Definition 21. The statement that the point set Mosundedmeans that M
is a subset of some closed interval.

Definition 22. Let M be a point set. The statement that Masinded below
means that there is a point z such that z is less than or equalftr every
m in M. Bounded aboveis defined similarly.

Theorem 8. If the sequence pp2, p3,... converges to the point x, then
M = {p1, P2, P3... } is bounded.

Axiom 7. The Completeness Axionif M is a point set and there is a point
to the right of every point of M, then there is either a righbshpoint of M
or afirst point to the right of M

Similarly, if there is a point to the left of every point M, then there is
either left-most point oM or a first point to the left oM.

Theorem 9. (CA) If M is a closed and bounded point set, then there is a
left-most point of M and a right-most point of.M
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Definition 23. The statement that the sequengem, ps, ... is anincreas-
ing sequence means that for each positive integennRs Pn1-

Definition 24. The statement that the sequenegem, ps, . - . isnon-decreasing
means that for each positive integer @, 9 pPn+1.

Decreasingandnon-increasingsequences are defined similarly.

Theorem 10. (CA) If p1, p2, p3, ... IS a non-decreasing sequence and there
is a point, X, to the right of each point of the sequence, thensequence
converges to some point.

Problem 20. Show that if M is a point set and p is a point and every closed
interval containing p contains a point of M different fromtpen p is a limit
point of M.

Problem 21. Show that itis not true that if p is a limit point of a point sef M
then every closed interval containing p must contain a poiril different
from p.

Problem 22. True or false? Ifa,b] is a closed interval and G is a collection
of open intervals with the property that every poinfanb] is in some open
interval in G then there is a finite subcollection of G with #ame property.

Theorem 11.1f M has p as a limit point, then there exists either an increas
ing or a decreasing sequence of points of M converging to p
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Chapter 2

Continuity

It is quite common for mathematicians to come up with more three defi-
nition for a concept. Two definitions are said todspiivalenif a mathemat-
ical object satisfying either one of the definitions musbaatisfy the other.
The following are three equivalent definitions for contiguone geometri-
cal, one topological (based on open intervals), and oneg/tacell (probably
similar to one you saw in a calculus course).

You might review Definitions 9 and 10 and the discussion feiig these
definitions before reading the next definition.

Definition 25. The statement that the function fasntinuous at the point
p = (X,y) means that

1. pisapointon f, and

2. if H and K are any two horizontal lines with p between thenent
there are two vertical lines, h and k with p between them soithas
any point in the domain of f between h andten(t, f(t)) is in the
rectangle bounded by,k,H, and K

Definition 26. The statement that the function fasntinuous at the point
p = (X,y) means that

1. pisapointonf, and

2. if S isany open interval containing the number f(x), then there is an
open interval T containing the number x such thatdfT, and t is in
the domain of fthen f(t) € S.

Definition 27. The statement that the function fasntinuous at the point
p = (X,y) means that

1. pisapointonf, and

2. if € is any positive number, then there is a positive numbso that if
t is in the domain of f an¢t —x| < J, then|f(t) — f(x)| < €.

7



Continuity

Definition 28. The statement that the function fdsntinuousat the num-
ber x means that x is in the domain of f and f is continuous apthiet

(X, f ().

Definition 29. The statement that f is @ontinuous function means that f
is a function which is continuous at each of its points.

Problem 23. Let f be the function such thatx) = 2 for all numbers x> 5,
and f(x) = 1 for all numbers x< 5.

1. Show that f is not continuous at the point (5,1).
2. Show thatift is a number and 5, then f is continuous 4t, 2).

Problem 24. Show that if f is a function angk, f(x)) is a pointon f, and
X is not a limit point of the domain of f, then f is continuou$xatf (x)).

Problem 25. Let f be the function such that(X) = x? for all numbers x.
Show that f is continuous at the point (2,4).

Problem 26. If f is a function which is continuous da, b] and xe€ (a,b)
such that fx) > 0 then there exists an open interval, dontaining x such
that f(t) > Oforallt € T.

Theorem 12.If f is a function and x,xo,Xs,... iS a sequence of points
in the domain of f converging to the number x in the domain ahd f is
continuous atx, f(x)), then f(xy), f(x2),... converges to f(x).

The converse of this statement is that ifs a function so that for every
sequenceq, X2, X3, ... in the domain off converging to a poink we have
that f(xq), f(x2),... converges td (x) thenf is continuous ax. This gives
us a fourth equivalent definition for continuity of a fungtio

Definition 30. We say that a function f isontinuous at the point x if and
only if for every sequence; 2, ps, ... in the domain of f converging to x
we have that fp1), f(p2),... converges to ().

Definition 31. If f and g are functions and there is a point common to the
domain of f and the domain of g, then-fg denotes the function h such that
for each number x in the domain of both of f and @)h= f(x) +g(x).

Theorem 13.If each of f and g is a function, x is a point in the domain of
each of f and gf is continuous at the poirik, f (X)), g is continuous at the
point (x,g(x)), and h= f 4 g, then h is continuous at the poifx h(x)).

We can’t prove everything in the given time, but we’ll assuedéitional
theorems as needed about continuity. For example we’llnasghat under
appropriate conditions, the product, quotient, and comtiposof continu-
ous functions are continuous and that all polynomials an¢icoous.
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Continuity

Theorem 14. Suppose f and g are functions having domain M and each is
continuous at the point p in M. Suppose that h is a functioh ditmain M
such that f(p)=h(p)=g(p) and for each number x in Mxf < h(x) < g(x).
Prove h is continuous at p.

Theorem 15.(CA) IfI1,12,13,... is a sequence of closed intervals such that
for each positive integer nyl1 C Iy, then there is a point p such that if nis
any positive integer, then p is ip.lIn other words, there is a point p which
is in all the closed intervals of the sequengdi, I, . ...

Theorem 16. (CA) If 11,12,13,... is a sequence of closed intervals so that
for each positive integer n,11 C I, and the length of,lis less thar%, then
there is only one point p such that for each positive integgr @ I,.

Theorem 17.1f fis a continuous function whose domain includes the dose
interval [a, b] and there is a point x iffia, b] so that f(x) is greater than or
equal to zero, then the set of all numbers fa, b] such that fx) > 0is a
closed point set.

Theorem 18. If f is a continuous function whose domain includes a closed
interval [a,b] and pe [a,b], then the set of all numbersa[a, b] such that
f(x) = f(p) is a closed point set.

Definition 32. The statement that the point sets H and K digoint or
mutually exclusive means that they have no point in common.

Theorem 19.(CA) No closed interval is the union of two mutually exclasiv
closed point sets.

Problem 27. (CA) If f is a function with domain the closed interjal b]
and the range of f i§—1,1}, then there is a number x i, b] at which f is
not continuous.

Theorem 20. (CA) Let f be a continuous function whose domain includes
the closed intervala, b]. If f (a) < 0and f(b) > 0, then there is a number x
between a and b such thatx) = 0.

Theorem 21. If f is a continuous function whose domain includes a closed
interval [a,b], and L is a horizontal line, anda, f(a)) is below L, and

(b, f(b)) is above L, then there is a number x between a and b such that
(x, f(x))ison L.
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Chapter 3

Differentiability

As with continuity, we offer three equivalent definitionsddrivative, one
geometric, topological, and one analytical.

Definition 33. The non-vertical line L igangent to the function f at the
point P = (x,y) means that:

1. xis a limit point of the domain of f,
2. PisapointofL, and

3. if A .and B are non-vertical lines containing P with the lindetween
them (except at P), then there are two vertical lines H and K\
between them such that if Q is a point of f between H and K waich i
not P, then Q is between A and B

In the previous definition we write that we have three digtimes, A, B,
andL with L between AandB (except atP). By this we mean that for any
point| on L (exceptP) there is a poine on A and a pointb on B so that
eitherais belowl which is belowb or thatb is below! which is belowa.

Definition 34. If f is a function, then the statement that f hadexivative
at the number a in the domain of f means that f has a non-vétacgent
line at the point(a, f(a)). We use the notatior (fa) to denote the slope of
the line tangent to f at the poiria, f(a)) and f'(a) is called thederivative
of f ata.

Definition 35. If fis a function, the statement that f hdsrivative D at the
number x in the domain of f means that

1. xis a limit point of the domain of f, and

2. if Sis an open interval containing D, then there is an opgarval T
containing x such thatif t is a number in T and in the domainanid

t # X, then
JORRICI
t—X
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Differentiability

As an alternative to this definition:

Definition 36. If fis a function, the statement that f hdsrivative D at the
number x in the domain of f means that

1. xis a limit point of the domain of f, and

2. if € is a positive number, then there is a positive numbsuch that if
f(t)—f
-0

t is in the domain of f an¢t — x| < & then < E.

Problem 28. Use any of the definitions derivative to show that if {x) =
x?+1then f(3) = 6.

Problem 29. Use the definition of tangent to show that if f is a func-
tion whose domain includes-1,1), and for each number x iti—1,1),
—x? < f(x) < %2, then the x-axis is tangent to f at the po{6t0).

Problem 30. Use any of the definitions of derivative to show that if f is a
function whose domain includés-1,1) and for each number x i(—1,1),
—x2 < f(x) < x?, then the derivative of f at the poi(®,0) is 0.

Theorem 22.If f is a function, and x is in the domain of f, then f does not
have two tangent lines at the poif¢ f(x)).

Definition 37. If f is a function which has a derivative at some point, then
thederivative of f is the function denoted by, fsuch that for each number
x at which f has a derivative,’ (x) is the derivative of f at x.

Definition 38. If M is a point set, then thelosureof M is the set consisting
of M together with any limit points of M. It is denoted by([ll) or by M.

Theorem 23.1f M is a point set then GM) is a closed point set.

From this point forward we may ud® to represent the set of real num-
bers and; to denote the domain df.

Theorem 24. Suppose that f is a function that is differentiable at thenpoi
p and that cc R. Show that the function g defined bixpg= cf(x) for all
x € D¢ is also differentiable at the point p.

Theorem 25. Suppose that each of f and g are functions that are differen-
tiable at the point p and that h is the function defined tw) k= f (x) +g(x)
for all x € D¢. Show that h is also differentiable at the point p.

Theorem 26. If fis a function, x is in the domain of f, and f has a derivative
at (x, f(x)), then fis continuous &gk, f (x)).

Theorem 27.If f is a function, it C [a,b], x € (a,b), f(x) > f(t) for all
t € (a,b), and f has a derivative at x, theri(k) = 0.
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Differentiability

Problem 31. Does there exist a function f defined and continuouf)oh
such that f0) =0 and f(1) = 1 and f(x) = 0 at all but countably many
points of[0, 1]?

We can’t prove everything we need, but at this point, you dqubve
that all polynomials are differentiable. You could alsoy®all the theorems
about differentiability: the power rule, constant rulerrstule, product rule,
and quotient rules.
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Chapter 4

Riemann Integration

We have already shown that¥ is a bounded point set, then eitlidrhas a
right-most point or there is a first point to the rightif We shall call this
number, whichever it is, thieast upper bound ofM, and we will denote it
by lub(M). Similarly if a setM has a left-most point or a first point to the left
of M, then we will refer to this point as thgreatest lower bound ofM and
denote it byglb(M). Some mathematicians use the notatsupremum of

M andinfimum of M respectively.

We won't present the next two problems, but you may use theyouf
need them.

Problem 32. If H and K are bounded sets and H K then glgK) <

glb(H).

Problem 33. If each of H and K are bounded sets andtHK = {h+k:h e

H,k € K} then glliH) +glb(K) = glb(H & K).

Definition 39. A boundedfunction is a function with bounded range.

Definition 40. If [a,b] is a closed interval, by artition of [a,b] is meant

a set of pointqto,ts,...,th} satisfyinga=to<ti <tp <--- <th_1 <ty=Db.
For the next four definitions, assume tHats a bounded function with

domain the closed intervé, b.

Definition 41. The statement that the number S Riamann sumfor f on
[a,b] means that there is a partitiofto, ts, ..., ty} of [a,b] and a sequence
X1,X2,...,Xy Of numbers such that x [ti_1,tj] fori =1,2,3,...,n and S=

_if(xi)(ti —ti_1).

Definition 42. The statement that the number S isdipper Riemann sum

for f on [a,b] means that there is a patrtitiofto,t,...,ty} of [a,b] and a

sequenceyyysy,...,Yyn of numbers such that y= lub{ f (x)|x € [ti_1,t;]} for
n

i=12,...,nand S= Vi(ti—ti_1).
i;l | |
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Riemann Integration

Definition 43. We define théower Riemann sumin the same way except
that yy = glb{f(x)|x € [ti_1,t]} for each positive integer+1,2,...,n.

If f is a bounded function with domain the closed inter{alb] and P
is a partition of[a, b, thenUp(f) andLp(f) denote the upper and lower
Riemann sums of.

Problem 34. Let f(x) = 0 for each number x ifi0, 1] except x= 0, and let
f(0) = 1. Show that:

1. if P is a partition of{0, 1], thenO < Upf,
2. if € > 0, then there is a partition P dD, 1] such that yf < &, and
3. zero is the only lower Riemann sum for f[Onl].

Theorem 28. If p1, p2, p3, ... IS @ sequence of points in the closed interval
[a,b], then there is a pointife, b] which is not in the sequence,py, ps, - . . .

Theorem 29. If x is a limit point of the point set Mthen there is a se-
quence of pointsppo, p3, ... of M, all different and none equal to x which
converge to x.

Theorem 30. If X1,X2,X3,... IS a sequence of distinct points in the closed
interval [a, b, then the range of the sequence has a limit point.

A consequence of Theorem 30 is that every infinite boundetiaet
limit point.

Theorem 31.If f is a function with domaira,b|, and f is continuous at
each number iffa, b, then the range of f is a closed point set.

Theorem 32.1If f is a function with domairja,b] and f is continuous at
each number ija, b], then the range of f is bounded.

Theorem 33.If f is a continuous function with domaja, b|, then there is
a number » [a,b] such that if t€ [a,b], then f(t) < f(x).

Definition 44. If f is a bounded function with domain the closed interval

[a,b], then theupper integral from a to b of f is the greatest lower bound of
b

the set of all upper Riemann sums for fjanb] and is denoted by | f.
Thelower integral from a to b of f is the least upper bound of the saet of all

b
lower Riemann sums for f da, b] and is denoted by/ f.
a

Definition 45. If f is a bounded function with domaja, b], then the state-

b b
ment that f iRiemann integrableon [a, b] means thag/ f =y / f.
a a
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Riemann Integration

When a function is Riemann integrable, we drop the subsdd@ndL
b

and referto/ f astheRiemann integral of f.
a

Theorem 34. Show that if f is a function whose domain includes the closed
interval [a,b], and for each number x ifg,b], m< f(x) < M, and P=
{to,t1,...,tn} is any partition of{a,b], then pf < M(b—a) and Lp(f) >
m(b—a).

Theorem 35. If f is a bounded function with domain the closed interval
[a,b], and P is a partition ofa, b], then Lp(f) < Up(f).

Theorem 36. If f is bounded onja, b] then the set of all Riemann sums of f
is bounded.

Theorem 37.1If f is a bounded function with domaiia, b], and for each
number x in[a, b], f(x) > 0, and for some number z [a,b], f(z) > 0and f

b
is continuous at z, the\m/ f>0.
a

Definition 46. The statement that the partition Q of the closed intefadb)
is arefinement of the partition P ofa, b] means that = Q.

Theorem 38.1f P, and B are partitions of [a,b] then there exists a partition
Q of [a,b] so that Q is a refinement of both &1d B.

Theorem 39. If f is a bounded function with domain the closed interval
[a,b], P is a partition of[a, b], Q is a partition of{a, b], and Q is a refinement
of P, then Ip(f) < Lo(f) and Us(f) > Uq(f).

b
Theorem 40. If f is a bounded function with domaja, b, thenL/ f <
a

b
U/f.
a

Theorem 41.If f is a continuous function with domain the closed interval
[a,b], ande is a positive number, then there is a partitiPxy, X1, X2, . .., Xn }

of the closed intervala, b] such that for each positive integer i not larger
than n, if u and v are two numbers in the closed interfxaly,X;], then
[f(u)— f(v)| <e.

Theorem 42.If f is a continuous function with domain a closed interval,
then the range of f contains only one value or it is a closeelrirdl.

Theorem 43.If f is a bounded function with domain the closed interval
[a,b] and for each positive number, there is a partition P ofa, b] such
that Up(f) — Lp(f) < &, then fis Riemann integrable da, b).

Theorem 44. If f is a continuous function with domain the closed interval
[a,b], then f is Riemann integrable da, b.
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Riemann Integration

Definition 47. A function f isincreasingif for each pair of points x and y
in the domain of f satisfying x y we have {x) < f(y). The function is
non-decreasingif under the same assumptions we haye) K f(y).

Theorem 45. Every non-decreasing bounded function[arb| is Riemann
integrable onfa, b).

Theorem 46. If [a,b] is a closed interval and € (a,b) and f is integrable
c b
on [a,c| and onic,b] and onla, b], then/ f+/ f :/ f.

Definition 48 If [a,b] is a closed interval and f is integrable da, b] then

we deflne / f and/ f=

Theorem 47.If f is a continuous function with domain the closed interval
b

[a,b], then there is a number c i, b] such that/ f=1f(c)(b—a).
a

Theorem 48. If f is a continuous function with domain the closed i)r(1terva|
[a,b] and F is the function such that for each number jairb], F(x) :/ f,

a
then for each number c i, b] F has a derivative at c andfFc) = f(c).

Theorem 49. If f is a function with domain the closed intervial b] and f
has a derivative at each point {d,b] and f' is continuous at each point in

[a,b],then/bf’: £(b) — f(a).
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Chapter 5

Miscellany

Some material in this chapter is pre-requisite for the nbapter.
Theorem 50. If f is continuous at the point p and K is a subset of the
domain of f and p is a limit point of Kthen pe CI(f(K)).
b b
Theorem 51. If f is an integrable function, theh/ fl g/ |f].
a a

Lemma 52. Suppose f is a function whose domain inclu@geb], f(a) =
0= f(b), and f has a derivative at each of its points. Then there is ab®mrm
cin (a,b) such thatfc) = 0.

X
Theorem 53.If f is continuous ona,b] and gx) = / f for all x € [a,b]
a

then g is continuous ofa, bJ.
Theorem 54. Suppose f is a non-decreasing function whose domain in-
cludes[a,b] and f has a derivative at each of its points, then there is a

number c in (a,b) such that (ft) is the same as the slope of the line joining
the two pointga, f(a)) and (b, f(b)).

Although we stated the previous theorem only for non-destnggfunc-
tions, it is valid for any differentiable function defined @mb] and differ-
entiable on(a, b). You may use the more general statement if you require it
later.

Definition 49. A set iscountableif it is the range of some sequence.

Theorem 55. All finite sets, the natrual numbers, the integers and the ra-
tionals numbers are countable.

Theorem 56. Every countable closed set has a point that is not a limitpoin
of the set.

Theorem 57. The real numbers are not countable.
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Miscellany

Theorem 58. If f is continuous on the closed intervia, b] and M C [a, b]
is closed then M) is closed.

Problem 35. Show there exists a function f that is continuous at a point x
which is a limit point of points at which f is not continuous.

Problem 36. Show that there exists a function f that is nowhere contisuou
on|[0,1].

Definition 50. If A and B are sets, thenAB = {x€ A:xis notin B.

Theorem 59. If M is a countable subset ¢, b] then every point of M is a
limit point of [a,b] — M.

Definition 51. A function f isuniformly continuous on the set M if for
everye > 0 there exists a numbe&¥ > 0 so thatifuve M and|u—v| < &
then|f(u) — f(v)| <e.

Theorem 60. A function f is continuous o, b] if and only if f is uniformly
continuous ona, bJ.

A stronger results holds: a function defined and continuowsy closed
and bounded (compact) subset of the reals is uniformly cootis on that
domain.

Problem 37. Show that there exists a function f that is continuougahb)
but not uniformly continuous ofa, b).

A shorthand for the sequeneg, ay, ag, ... is (an)p_1-

Definition 52. If (an);;_; is a sequence then the sequenceartial sums
N

of (an)p_; is the (new) sequence defined hy-S Z a,, N=1,23,.... If
n=1

the sequence of partial suniSy){_; converges then we define the point
to which this sequence converges to beitiimite series associated with

(an)p_; and denote it b;Za.
i=

Theorem 61.1f (an);_, is a sequence an21|ai| converges therzlai con-
verges. = =

Definition 53. A function fis called d.ipschitz function if there exists & 0
such that for every pair w in the domain of f|f(u) — f(v)| < clu—v]|.

Problem 38. Show that there exists a function that is LipschitZai| but
not differentiable orja, b).

Theorem 62. Show that every Lipschitz function is uniformly continuous
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Miscellany

Definition 54. If fq, fp, f3,... is a sequence of functions with a common
domain D then we say that,ff,, f3, converges pointwiseon D if there is

a function f defined on D so that for eackeXD the sequenceéfn (X)),
converges to (x).

Definition 55. If fq, fp, f3,... is a sequence of functions with a common
domain D then we say that,ff,, f3, converges uniformlyon D if there is

a function f defined on D so that for al > 0 there is a natural number
N so that for all natural numbers i N and for all xe D we have f(x) —
fn(X)| < €.

Problem 39. Show there is a sequence of continuous functionds; ffs, . ..
converging pointwise to a function that is not continuous.

Problem 40. Show there is a sequence of differentiable functiond, ffs, ...
converging pointwise to a function that is not continuous.

Theorem 63. Show that if {, fo, f3,... is a sequence of continuous func-
tions converging uniformly to the function f then f is contns.
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Chapter 6

Successive Approximations

In this section, we use successive approximations to detrad@she ex-
istence of a unique solution to the differential equatigns= y,y(0) = 1,
which you will recall from calculus is the functiofis(x) = €. There are
many ways to define the “exponential function.” Here are a few

1. Define sequences and convergence, then show that thensecaye=
(1+ %)” forn=12, ... isincreasing and bounded above. Then apply
the completeness axiom to assure that it converges to sombanu
Call that numbee. Define general exponential functions of the form
f(x) = b*. Whenb = e you have the natural exponential function.

2. Develop dlﬁerentlal and integral calculus and then defire integral
L(x) = / — dt. Show that this function is strictly increasing, hence
1

one-to-one and then define a functiénthe natural exponential func-
tion, to be the inverse df.

3. Develop sequences, series, and convergence and shofertiezich
oo | oY 1
X

. X :
real numberx, the series .y converges. Now defing(x) = TR
! &l

i=
4. Develop differential and integral calculus and then atersthe ques-
tion, does there exist a functidnthat satisfies:

i. f(0)=1and
i. f/(t)=f(t)forallteR?

All of these approaches lead to the functid{x) = € andL(x) = In(x)
that you are familiar with. It is the latter path that we taleeause it makes
use of much of the analysis that you have already developgdemes as a
brief introduction to series.

Problem 41 is a “warm-up” for the next sequence of problenus.tlis
problem, assume that you do know that the funcid®) = € exists and

20



Successive Approximations

that you remember all your calculus(!) and that the usu&soff differen-
tiation and integration apply. Fdinis problem onlyif you need a reminder
of Taylor series, you may look at the web or a book.

Problem 41. Successive approximations, Picard’s iterates.

1. Compute the Taylor Series fof = €*.
2. Show that ify is differentiable df, 1] and y(t) = y(t) for all t € [0, 1]
t
and y(0) = 1then yt) = 1+/ y.
0

t
3. Show that ify is differentiable df, 1] and y(t) = 1+/ ytheny=y
0
and y(0) = 1.

t
4. Letyy=1and y, = yo+/ yn-1 foralln=1,2 ... and compute by
0
hand ¥,Y1,¥2,- -

Now that you've completed the “warm-up” exercise, forgedttiyou
know that there exists a functidb(x) = € and close your calculus book
or website.

n .
Theorem 64. Suppos® < r < 1 and define a sequence byS Z}r' for all
i=

1
n=12,....Showthat§$,S;s,... converges tel—r'

Theorem 65. Suppose that c is a number betw®amd1 and &), a;,ay, ...
IS a sequence of positive numbers andcacg_1 for alli =1,2,... and
n

S = Z)ai foralln=1,2,.... Show that the sequence S, ... converges.
i=

Theorem 66. For each natural number n define the functignb f,(x) =
K

n
Z % for every xe [0,1]. Show that £ is continuous ono, 1].
k=0 "

Theorem 67.Let f;, fp,... be the sequence of functions defined in the previ-
ous problem and show that if [0, 1] then fi(x), f2(x), f3(X) ... converges
to some number.

Since for eachx € [0, 1] the sequencdi(x), f2(X), f3(X)..., converges
we may define a functiofi on [0, 1] as follows: for eaclx € [0,1] let f(x)
be the number to whiclfy (x), f2(x), f3(x) ... converges. Now we have that
the sequencéy, f,, fs,... convergegpointwiseto f on |0, 1].

Theorem 68. Show that the sequence of functions defined in the previous
problem converges uniformly da, 1].
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Successive Approximations

Theorem 69. If f1, f2,... converges uniformly to f of9,1] and se [0, 1]

and/ fpexistsforalln=1,2,... thenthe sequence ofnumb?frsfl,/ fo,...
0 0

S

converges to the number f.
0

Theorem 70. Let f be the funsction defined by Theorem 66 and g be the
function defined by(@) = 1+/ f. Show that =g on[0, 1] and f(0) = 1.
0

Theorem 71. Show that if L is the function with domain all differentiable
functions and defined by(l)) = U’ — u then y= 0 is the unique solution to
L(y) =0and y0) =

Theorem 72. Supposegt X € R and show that there are not two solutions
to L(y) =0and ytp) =

Theorem 73. Show there is a unique solution to the initial value problem
y'+y=0,y(0) =0,y (0) = 1 as follows:

1. Convert the second order equation to a first order system,

(3)/ =A Cj) , (\lj) (0)= ((D where A is & x 2 matrix.

2. Apply Picard’s iteration to obtain sequences of funcsiom,us, ...
and\,vy,...

3. Showthatthere are functions u and v so thid;y_; — uand(vn)y_; — v

and (\Lj) is a solution to the .
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Chapter 7

Subsequences and Cauchy Sequences

Definition 56. The statement thatggy,ds, . . . is asubsequencef pi, p2, ps,. ..
means that there is an increasing sequence of natural nusnbgny, ns, . ..
such that for each natural numbenwe have g = q;.

Example: Supposepi, p2, p3,... IS a sequence and is a function with
domain the natural numbers definedrgk) = 2k. Thenn defines the sub-

sequencepz, P4, Pe; - - - -
Theorem 74. Suppose thatqa, s, ... is a subsequence of 2, ps, . . ..

Show that if there is a number x so that, p2, p3,... converges to x then
d1,d2,03, ... converges to x

Problem 42. Suppose thatqd,ds, ... is a subsequence of jp2, ps3, . . .
and there is a number x so that,qp,qs,... converges to Xis it true that
p1, P2, P3, ... converges to x?

Problem 43. Suppose thatpn),,_; is a sequence of points in the closed
interval [a,b]. Is it true that every subsequence (@h);y_; converges to
some pointirfa, b]?

Definition 57. A set of numbers K isompactif every sequence of points
in K has a subsequence that converges to some point in K

Theorem 75. Show that every closed interval is compact.

Theorem 76. If x is a limit point of{ po, p1, p2, - - - } and every subsequence
of (pn)m_, CONverges theqpn);y_, converges to x

Theorem 77. Show that every closed and bounded séR is compact.

Previously, we proved that every infinite bounded set hamd point.
Now we have the equivalent to this statement for sequenicasevery se-
quence with infinite bounded range has a convergent subsegue

Definition 58. The statement that the sequengem, ps, ... is a Cauchy
sequencameans that i€ is a positive number, then there is a positive integer
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Subsequences and Cauchy Sequences

N such that if n is a positive integer and m is a positive intage> N, and
m > N, then the distance from,po py, is less thare.

Theorem 78. The sequenceipps, ps, ... is a Cauchy sequence if and only
if itis true that for each positive number there is a positive integer N such
that if n is a positive integer anda N, then|p, — pn| < €.

Theorem 79. If the sequence 1pp2, p3,... converges to a point X, then
P1, P2, P3, - .. IS a Cauchy sequence.

Theorem 80.1f p1, p2, p3, - . . is @ Cauchy sequence, then the{get, p2, ps, ... }
is bounded.

Theorem 81.1f p1, p2, ps, - . . is a Cauchy sequence, then the{get, p2, ps, ... }
does not have two limit points.

Theorem 82. If p1,p2, p3,... IS a Cauchy sequence, then the sequence
P1, P2, P3,... converges to some point.
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Chapter 8

Basic Set Theory

We now modify our notion ofunctionso that the domain and range are not
restricted to subsets of the real numbers. From this pointvenwill also
allow the possibility that a set is empty.

Definition 59. Given two sets X and, X xY = {(x,y) : xe X,ye Y}. A
relation on X x Y is a subset of X Y. Afunction on Xx Y is a relation on
X xY with the property that no two elements have the same firsticwtes.
The set of all first coordinates is called tdemain of the function and the
set of all second coordinates is called ttamge of the function.

For a functionf on X x Y we will write f : X — Y and if (u,v) is an
element off then we will use the notatiorf,(u) = v. In this case, we say
that f mapsutov.

Definition 60. If f : X — Y is a function, then f imjective (one-to-one)

if no two elements of X map to the same element. iM& say that f is
surjective (onto) if for each element g Y there is some elementexX
such that fx) =y. We call an injective function amjection, a surjective
function asurjection, and a function that is both injective and surjective a
bijection.

Every functionf : X — Y is a surjection onto its range.

Theorem 83.Let f: X — Y be a surjection. Show that f is injective if and
only if there is a function gY — X so that ¢f(x)) = x for all x € X.

Definition 61. Given a function £ X — Y, the relation f!is defined by
f=1={(v,u): (uv) e f}.

The setf ~1 might not be a function. If is injective then by Theorem
83 we have thaf ~* is a function.

From this point forward, we may use (i§* to mean “there exists,” (ii)
“&” to mean “is not in” and (i) 5” to mean “such that.”
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Basic Set Theory

Definition 62. If f : X — Y and AC X then theimage of A under f is
{f(x) : x€ A} and is denoted by(f\). More precisely, f{A) ={yeY :3xe
A3 f(x) =y}

Definition 63. If f : X — Y and ACY then thanverse image ofA under
fis {xe X: f(x) € A} and is denoted by f}(A). This is often called the
pre-image ofA.

Question 1. Are problems 62 and 63 acceptable definitions or are they an
abuse of notation?

Theorem 84. Show that if f: X — Y then f is surjective if and only if the
inverse image of every non-empty subset of Y is non-empty.

Definition 64. Assume that each of A and B are subsets of the s&s3ume
that A is a set and that QA is a subset of X for each € A. A is called an
index set.

1. 0 = the empty set

2. A={xeX:x¢A}

3. AUB={xeX:xeAorxeB}

4. AnNB= {xe X :xe Aand xe B}

5 UrenAr = {xe X :xe A, forsomer € A}
6. MrcnAr = {xe X :xe A, foreveryd € A}

We won't present the next theorem. You only need to write daygnoof
if you cannot write down a proof.

Theorem 85. Assume that each of B and C are subsets of the set X

1. AuB=BUAand AAB=BNA

AUD=Aand AAD=0

AUX =X and AOX =A

AN(BUC) = (AnB)U(ANC) and AU (BNC) = (AuB)N(AUC)
(A=A ANA°=0, 0°=X,and X*=0

6. ACB < B°CA°

a WD

Theorem 86. Assume thaf\ is a set and that pAis a set for eachA € A.
Show that

L (Uren®)=Mren (A1),
2. (ﬂ)\ eAA)\ )C = U)\ en (AA )C’
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Basic Set Theory

3. AN (UreaMr) = Urea(ANAy), and

4. AU (m)\e/\A)\) = ﬂ)\e/\(AUA)\)-

Theorem 87. Assume that f X — Y is a function is a set, and B is a
subset of Y for each € A. Show that

1. fﬁl(U)\e/\ BA) - U)\e/\ fﬁl(BA)’ and
2. f_l(m)\e/\ B)\) = ﬂ)\e/\ f_1<B)\)-

Theorem 88. Assume that f X — Y is a function and D is a subset of Y.
Show that f ~1(D))® = f~%(D°).

Theorem 89.Assume that fX — Y is afunction, AZ X, and DC Y. Show
that

1. f(f~1(D))Cc D,
2. f71(f(A)) CA and
3. if f is surjective, then (ff ~(D)) = D.
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Chapter 9

Measure Theory

Theorem 90. If O is a bounded open set and p is a point of O then there is
a unique open interval containing p which is a subset of O wharglpoints
do not lie in O.

Now that we know that the intervals described in Theorem 96t ewe
can formally define them and give them a name.

Definition 65. If O is a bounded open set andg0 then the open interval
containing p which is a subset of O and whose endpoints arennot is
called thecomponent of O containing p

Theorem 91.If O is a bounded open set, then the set of all components of
O is a countable collection of mutually disjoint open inesmwhose union
is O.

Definition 66. If S is any interval (open, closed, or half-open), then we
define L(S) to be thiength of S. For example, if S [a,b], then L(S) =
b—a. If G is a finite collection of mutually disjoint open intergahen L(G)
denotes the sum of the lengths of the elements of GHI{ 6,092,093, ... } IS

a countable collection of mutually disjoint open intervblgg in an open
interval, then LG) = 572 1 L(gi).

Theorem 92.If G is a finite collection of mutually disjoint open intergal
lying in the open interval (a,b), thenG) <b—a.

Theorem 93.If G is a countable collection of mutually disjoint open inte
vals lying in the open interval (a,b) then®) < b—a.

Definition 67. If G is a collection of point sets then‘@enotes the set which
is the union of the members of G; that is, € Uy 9-

Theorem 94.1f G and H are countable collections of mutually disjoint ape
intervals and G C H*, then L(G) < L(H).

Definition 68. A point set M is said to belosedif and only if no point not
in M is a limit point of M.
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Measure Theory

Theorem 95. If O is an open set which is a subset of the closed interval
[a,b], then [a,b]-O is a closed point set, and if M is a closeamt set which
lies in an open interval (a,b), then (a,b)-M is an open set.

Definition 69. The statement thahe set G of open intervals properly
covers the set Mmeans that every point of M lies in a member of G and
every member of G contains a point of M.

Definition 70. If M is a bounded point set then by tlater measure of
M, denoted (M), is meant the greatest lower bound of the set of &b
where G is any collection of mutually disjoint open intesahich properly
cover M.

Theorem 96. Show that if M is a countable point set then the outer measure
of M is zero.

Theorem 97.1f O is a bounded open set and G is the set of all components
of O, then g(O) = L(G).

Theorem 98. If [a,b] is a closed interval, then gi[a,b]) = b—a.

Theorem 99.If M is a bounded point set and | and J are two closed intervals
containing M, and IC J, then ig(1) — mp(I = M) = my(J) — mp(J — M).

Theorem 100.If M is a bounded point set and | and J are two closed inter-
vals containing M, then gil ) — mg(I — M) = my(J) — mMe(J —M).

Definition 71. If M is a bounded point set, thaghe inner measure of M,
denoted (M), means rg(l) — my(I — M) for some closed interval, |, con-
taining M.

Definition 72. The statement that the point set Migasurablemeans that
mMe(M) = m(M). When M is measurable,dtM) is called the measure of
M and denoted by m(M).

Theorem 101.1f M is a bounded, measurable set, and | is a closed interval
containing M, then I-M is measurable.

Theorem 102.If H and K are disjoint, bounded sets, then(d UK) <
Mo(H) + mo(K).

Theorem 103.If H and K are disjoint, bounded measurable sets thenkd

iIs measurable.

Theorem 104.If H and K are disjoint, bounded measurable sets th¢H m

K) =m(H) +m(K).

Theorem 105.1f M is a closed interval or an open interval, then M is mea-
surable and M) = m(M).

Theorem 106.If G is a collection of open intervals covering the closed
interval [a,b] then there is a finite subcollection of G which also covers
[a,b].
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Chapter 10

Conclusion

Congratulations! You have come a long way since the definition of a limit
point. The theorems that you proved on your journey are ¢ssém many
areas of mathematics including topology, complex analjisigtional anal-
ysis, real variables and measure theory. Perhaps as impadadhe results
is the fact that you proved many of them on your own. Sadly,yreanun-
dergraduate has graduated with a degree in mathematiosuwitine ability
to either prove theorems on his or her own, or even undersignoroof of a
theorem as presented by another. Because of this, | knovhérsd of grad-
uate programs where a course equivalent to this coursedn takgraduate
credit because incoming students are unprepared to prevedaims. Even
a student who graduates in mathematics without this skdukhat least
have a deep appreciation for this process that is so fundairterthe na-
ture of the subject. Many undergraduate programs have egdiee issue of
teaching students to prove theorems because of the diffictithis daunt-
ing task. Applied programs often have minimal courses aesgigo train
students in creating mathematics, rather they emphasimsihg and apply-
ing mathematical results. While both have value, many obist applied
mathematicians are also pure mathematicians becauseargtgoblem is
a direct application of a theorem. Sometimes the theorenss Ipeumodified
or built to fit the application at hand.

Now let’s talk about some of the important results that yovehdevel-
oped during this semester. | will speak loosely here withibatprecision
to which you have been accustomed. Consider this a furtberahyour
mathematical training. Many of the mathematicians you aiitounter in
the future will not be as precise with the language as we haea In this
class. Just translate their work into nice precise mathematst as you
translated my rough proofs into precise mathematics wherigtdmade?)
me present material on those rare days when you did not hatreematics
to show off to the class. You can start practicing on what lehawitten
below.
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Conclusion

We started with limit points and convergence, two importamderlying
concepts in analysis and topology. And we played a bit withgtudy of
open and closed sets. This is at the very heart of topologyaaatysis be-
cause we define continuity in terms of open sets. Therefbree ichange
the definition of an open set, then we change the continuctians. Go
ahead, change “open interval” to “closed interval” in thémlgon of con-
tinuity and ask, “Which functions are continuous now?” Thedrems that
we proved that were topological in nature were 15 and 16 wslcw that
the intersection of a nested sequence of closed intervsidtsen a point
or a closed interval. Together these are referred to afNdsted Interval
Theorem In topology you will see generalizations of this — that thibia
trary union of open sets is open and the arbitrary intersedaf closed sets
is closed. In Problem 27 you showed that no sequence couttdiltlosed
interval, [0,1]. This shows that the real line is not countable since a set is
countable precisely when there is some sequence whose isatit set.
Problem 30 is théolzano-Wierstrauss Theoreamd states that every infi-
nite bounded set has a limit point. A consequence of thidtrésat we used
regularly was that every bounded sequence has a convergesggience.

We discussed four equivalent definitions of continuity, Digfoins 25,
26, 27 and 30. The second will be generalized in a topologieting by
writing thata function is continuous if and only if the inverse image of an
open set under f is openThe third is the definition most often shown to
calculus students. The fourth is the analyst’s definitibaf & functionf is
continuous if for every sequence convergingtthe sequence obtained by
applying f to the original sequence converges{a). You also proved that
the sum of two continuous functions is continuous in Theot&n Along
the way, we showed several properties of continuous funstiodfogether
Theorems 32 and 33 showed that every continuous function dosad
interval has a maximum and a minimum value and attains thakees.
This is known as thé&xtreme Value TheoremThis theorem along with
the Intermediate Value Theorentheorem 21, yielded that the range of a
continuous function on a closed interval is either a poira olosed interval,
Theorem 42.

Knowing that the maximum and minimum exist is not good enojé
must be able to find them, and for that we need derivativesalzutus you
talked a lot about tangent lines, but you probably did notestely define a
tangent line from a geometric point of view. If it was definedky it might
have been defined by first defining the derivative in termswoitd and then
defining the tangent line té at (x, f(x)) to be the line with slope’(x)
passing througlix, f(x)). Our approach was to offer a geometric definition
of a tangent line in Definition 33 and then, if a function hasuagent line
at a point, we offered a geometric definition of the derivatiased on this
tangent line. In total, you saw three equivalent definitiohthe derivative,
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Conclusion

Definitions 34, 35, and 36. You then proved that the derigaBwnique in
Theorem 22 and that every differentiable function is carins in Theorem
26. As soon as you mastered derivatives in Calculus I, yatestapplying
them to find the maxima and minima of differentiable funciand you
always sought out points where the derivative was zero. Boldm 27 we
proved what you used in your calculus course: the derivatizero at both
local maxima and local minima.

The capstone theorem of the first semester was the fact tbat eon-
tinuous function is Riemann integrable, Theorem 44, a tesealextended
in a few ways. In fact, a function that is continuous on anrivdkexcept on
a subset of that interval with measure zero is still intelgralbhis explains
the introduction to measure theory. In the section on meatheory, we
proved theHeine-Borel TheorenTheorem 106, which states that any open
cover of a closed interval has a finite subcover. We proveétimelamental
Theorem of CalculysTheorems 48 and 49, thdean Value Theorem for
Integrals Theorem 47Rolle’s TheoremTheorem 52, and thiglean Value
Theorem for DerivativesTheorem 54. We showed that uniform continu-
ity and continuity are equivalent on the interval, a resuteading to any
compact domain. We extended our notion of convergence toesegs of
functions, defining pointwise convergence and uniform eogence. This
led us to powerful theorems such as 63 and 69, which statéaniform
limit of continuous functions is continuous and that if thmit of a sequence
of functions is uniform, then we may interchange the integnal the limit.
We introduced uniform limits, Lipschitz functions, and iserRatio Test
Theorem 65) to prepare us for a nice application of analyisesgxistence
and uniqueness of solutions to differential equations.|g\e showed this
only for two very elementary differential equations, thegess used illus-
trates the underlying concept for proviRgcard’s Existence Theorem

Still, even with all the theorems we proved, we left out a f&id you
miss them? What about the continuity of the product and caiipa of
continuous functions? What about the product, quotierd, @mposition
(chain) rules for derivatives? What about the fact that wefeator a con-
stant out of an integral? There are still many more such #mstto prove,
but once you have proven a handful of theorems about cobtjraeriva-
tives, and integration, the rest fall in much the same wapgquéie tech-
niques that you learned this semester.

As | revisited these ideas in graduate school, the way adlethleeorems
served as tools for other areas of mathematics, and the vegyathwere
extended and generalized to spaces other than the reaMasepart of the
beauty of the subject. | hope that | have shared a part of thethef the
subject with you and that it serves as a springboard to higilaghematics.
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