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To the Student

Analysis is an area of mathematics, just as Algebra, Geometry, and Topol-
ogy are areas of mathematics, and is usually defined heuristically or not
at all. In your calculus sequence you learned about the topics of limits,
continuity, differentiability, and integration at an introductory level. In this
course, we will follow the same order that you followed in calculus, but we
will spend more time on the mathematical structures than on the application
of the concepts. We will define each concept rigorously and present material
that you will recognize from calculus such as the Extreme Value Theorem,
Mean Value Theorem, Rolle’s Theorem, and the Fundamental Theorem of
Calculus. From here, we will explore the notions of uniform continuity, uni-
form convergence, the existence and uniqueness of solutions to differential
equations, and a bit of measure theory.

These notes are intended to be virtually self-contained, only assuming
basic understanding of the real numbers. If you work throughthe first fifty
problems independently, then you have mastered the topic that most univer-
sities would cover in a course titled “Real Analysis” or “Advanced Calcu-
lus.” Universities typically offer such a course after a “transitional” course
intended to move students away from working problems and toward a theo-
retical viewpoint of the subject.

The goal is to solve all the statements labeled as “Problems,” “Theo-
rems,” or “Lemmas.” The titles don’t necessarily representthe level of dif-
ficulty because the real work in proving a theorem may have been done in a
lemma or problem. A handful of the problems or theorems are labeled with
(CA) which implies they require the use of the Completeness Axiom.

The remainder of this introduction is important only to those taking the
course from me for credit.

All work presented or submitted is to be your own. You arenot to discuss
any problem with any one other than me, nor are you to look to any other
reference such as a book or the internet for further guidance.

Grading for the course will be no less than the average of three grades:
your presentation grade, your submission grade, and the average of your
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To the Student

midterm and final exam grades. Anyone who is regularly presenting ma-
terial at the board will certainly have adequate work for good submission
grades and thus will likely do well on the midterm and final. The midterm
and final grades are opportunities for those who do not regularly make it to
the board. However, it is my experience that those who do not work toward
successful presentations rarely do well on the midterm and final. Thus, I
emphasize that thegoal of the course for each student should be well pre-
pared, well presented problems at the board. You will know your grades on
submissions and tests. My policy for your presentation grade is:

D = the student made it to class every day, was attentive and alert, and
his or her cell phone never rang

C = requirements for D plus made a few successful presentations

B = requirements for C plus made numerous successful presentations

A = requirements for B plus presented some truly impressive problems

Turn-ins. You must turn in exactly one “new” problem each week. A
“new” problem means one that you havenot turned in before. This problem
should be neatly written and double spaced. You should labelthis problem
with TURN IN at the top of the page along with your name, the problem
number and the problem statement.

Grading for TURN IN assignments will be based on the following scale.

A = This is a correct proof.

B = You know how to prove the theorem but some of what you have
written is not correct.

C = You have a mistake in your work or I do not understand what you
have written, but I believe you have a good idea.

D = There is at least one major flaw in your argument.

Please understand that the purpose of the TURN IN assignments is to
teachyou to prove theorems. It is not expected that you started theclass
with this skill; hence, some low grades are to be expected. Donot be upset
- just come see me.

Resubmissions. If you receive a grade of less than B, you may resubmit a
TURN IN problem on the following week and I will average the two grades.
You still must turn in a new problem as well and you only get onechance
to resubmit. Please write RESUBMIT at the top. Feel free to come see me
anytime if you do not understand my comments. It is expected that a certain
amount of time in my office will be required to help students. Iprefer to give
guidance in my office rather than in class because this allowsme to tailor
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To the Student

the hints to the person who needs help, but I will always answer questions
in class as well.

Boardwork. If you have solved a problem that is about to be presented
at the boardor you feel you have made significant progress on a problem
that is about to be presented then you may opt to leave the roomfor the
presentation. In this case, you may turn in a write up of this problem for
credit as BOARD WORK. You must write BOARD WORK at the top of
the page. There is no limit on the number of BOARD WORK problems you
can submit.

Last Comments. Be sure that everything you turn in has your name,
problem number, and problem statement on it. Be sure to double space and
write either TURN IN, RESUBMIT, or BOARD WORK at the top.

I reserve the right to vary from these policies and probably will.
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Chapter 1

Limit Points and Sequences

You will find undefined words in these notes such ascollection, element, in,
memberandnumber. We assume that you have an intuitive understanding
of these words and an intuitive understanding of the algebraassociated with
the real numbers.

Definition 1. By apoint is meant an element of the real numbers,R.

Definition 2. By apoint set is meant a collection of one or more points.

Definition 3. The statement that the point set M islinearly ordered means
that there is a meaning for the words “less than” and “greaterthan” so that
if each of a, b, and c is in M, then

1. if a< b and b< c then a< c and

2. one and only one of the following is true:

i. a < b,

ii. b < a, or

iii. a = b.

Axiom 1. R is linearly ordered.

Axiom 2. If p is a point, then there is a point less than p and a point greater
than p.

When we refer to “two points,” we adhere to standard usage of the En-
glish language and thus imply that they are not the same point. For example,
if you went to “two stores” we would not assume that you visited the same
store twice. On the other hand if we were to write, “let each ofa andb be a
point” then it would be possible thata is the same point asb.

Axiom 3. If p and q are two points then there is a point between them, for
example,(p+q)/2.
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Limit Points and Sequences

Axiom 4. If a < b and c is any point, then a+c < b+c.

Axiom 5. If a < b and c> 0, then a·c< b ·c. If c< 0, then a·c> b ·c.

Axiom 6. If x is a point, then x is an integer or there is an integer n such
that n< x < n+1.

Definition 4. The statement that the point set O is anopen interval means
that there are two points a and b such that O is the set consisting of all
points between a and b.

Definition 5. The statement that the point set I is aclosed intervalmeans
that there are two points a and b such that I is the set consisting of the points
a and b and all points between a and b.

In set notation,

(a,b) = {x : x is a point anda < x < b}

and
[a,b] = {x : x is a point anda≤ x≤ b}.

We do not use(a,b) or [a,b] in the casea = b, although many mathemati-
cians and texts do. We refer toa andb as theendpointsof the interval.

Definition 6. If M is a point set and p is a point, the statement that p is a
limit point of the point set M means thateveryopen interval containing p
contains a point of M different from p.

Problem 1. Show that if M is the open interval(a,b), and p is in M, then p
is a limit point of M.

Problem 2. Show that if M is the closed interval[a,b], and p is not in M,
then p is not a limit point of M.

Problem 3. Show that if M is a point set having a limit point, then M con-
tains 2 points. Must M contain 3 points? 4 points?

Problem 4. Show that if M is the set of all positive integers, then no point
is a limit point of M.

Problem 5. Assume M is a point set and p is a point of M. Create a definition
for “q is the first point to the left of p in M” by completing the following. “If
M is a point set and p is a point in M...”

Problem 6. Assume M is a point set such that if p is a point of M, there is
a first point to the left of p in M and a first point to the right of pin M. Is it
true that M cannot have a limit point?

Definition 7. If each of A and B is a set, then the set defined by Aunion B
is the set consisting of all elements that are in A or in B.
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Limit Points and Sequences

Definition 8. If each of A and B are sets, then the set defined by Aintersec-
tion B is the set consisting of all elements that are in A and in B.

If M is a set andm is a point then the notationm∈ M translates as “m
is in M.” A∪B is written in set notation asA∪B = {x|x∈ A or x∈ B} and
A∩B is written in set notation asA∩B = {x|x∈ A andx∈ B}.

Problem 7. Show that if H is a point set and K is a point set and p is a limit
point of H∩K, then p is a limit point of H and p is a limit point of K.

Problem 8. Show that if H is a point set and K is a point set and every point
of H is a limit point of K and p is a limit point of H, then p is a limit point
of K.

Problem 9. If H is a point set and K is a point set and p is a limit point of
H ∪K, then p is a limit point of H or p is a limit point of K.

Problem 10. Show that if M is the set of all reciprocals of positive integers,
then0 (zero) is a limit point of M.

Up until now, the wordpoint has meant a real number. From here for-
ward, it may also be used to mean an ordered pair of real numbers, i.e. a
point in the plane.

Definition 9. The statement that f is afunction means that f is a collection
of points in the plane, no two of which have the same first coordinates.

Definition 10. If f is a function, then by thedomain of f is meant the point
set of all first coordinates of the ordered pairs in f, and by the range of f is
meant the set of all second coordinates of the ordered pairs in f.

We use the usual notation that iff if a function andx is a number in
the domain off , then f (x) is the number which is the 2nd coordinate of the
point of f whose 1st coordinate isx.

Definition 11. A sequence is a function with domain the natural numbers
and with range a subset of real numbers.

If p is a sequence, thenp = {(1, p(1)),(2, p(2)),(3, p(3)), . . .}. Since
writing p this way is cumbersome and the domain is always the natural num-
bers, we will denote sequences by listing only the points in the range of the
sequence,p(1), p(2), p(3), . . .. We’ll further abbreviate this as:p1, p2, p3, . . . .
The set{pi : i = 1,2,3, . . .} denotes the range of the sequence. That is,
{pi : i = 1,2,3, . . .} denotes the point set to which the pointx belongs if and
only if there is a positive integern such thatx = pn.

Definition 12. The statement that the point sequence p1, p2, . . . converges
to the point x means that if S is an open interval containing x then there is a
positive integer N such that if n is a positive integer and n≥ N then pn ∈ S.
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Limit Points and Sequences

Definition 13. The statement that the sequence p1, p2, p3, . . . converges
means that there is a point x such that p1, p2, p3, . . . converges to x.

Problem 11. For each positive integer n, let pn = 1−1/n. Show that the
sequence p1, p2, p3, . . . converges to1.

Problem 12. For each positive integer n, let p2n−1 = 1/(2n− 1) and let
p2n = 1+1/2n. Does the sequence p1, p2, p3, . . . converge to 0?

Problem 13. For each positive integer n, let p2n = 1/(2n− 1), and let
p2n−1 = 1/2n. Show that the sequence p1, p2, p3, . . . converges to0.

Problem 14. Show that if the sequence p1, p2, p3, . . . converges to the point
x, and, for each positive integer n, pn 6= pn+1, then x is a limit point of the
set which is the range of the sequence.

Problem 15. Show that if p6= 0, then p is not a limit point of the set
{1, 1

2, 1
3, . . .}.

Problem 16. Show that if c is a number and p1, p2, p3, . . . is a sequence
which converges to the point x, then the sequence c· p1,c· p2,c· p3, . . . con-
verges to c·x.

Problem 17. Show that if the sequence p1, p2, p3, . . . converges to x and
the sequence q1,q2,q3, . . . converges to y, then the sequence p1 + q1, p2 +
q2, p3 +q3, . . . converges to x+y.

Definition 14. The statement that p is thefirst point to the right of the
point set M means that p is greater than every point of M and if q is a point
less than p, then q is not greater than every point of M.

Definition 15. The statement that p is theright-most point of M means
that p is in M and no point of M is greater than p.

Problem 18. Show that if M is a point set, then there cannot be both a
right-most point of M and a first point to the right of M.

Problem 19. Show that if M is a point set and there is a point p which is
the first point to the right of M, then p is a limit point of M.

Theorem 1. If the sequence p1, p2, p3 . . . converges to the point x and y is
a point different from x, then p1, p2, p3, . . . does not converge to y.

Definition 16. The statement that the point set M isfinite means that there
is a positive integer n such that M contains n points but M doesnot contain
n+1 points.

Definition 17. The statement that the point set M isinfinite means that M
is not finite.

Theorem 2. If M is a finite point set, then M has a right-most point and a
left-most point.

W. Ted Mahavier< W. S. Mahavier www.jiblm.org



Limit Points and Sequences

Theorem 3. If the point p is a limit point of the point set M and S is an open
interval containing p, then S∩M is infinite.

Theorem 4. If the sequence p1, p2, p3, . . . converges to the point x and y is
a point different from x, then y is not a limit point of{pi : i = 1,2,3, . . .},
the range of the sequence.

Definition 18. If A and B are point sets, then we say that A is asubsetof B
if every point of A is also a point of B. This is typically denoted by A⊆ B.

Definition 19. The statement that the point set M is anopenpoint set means
that for every point p of M there is an open interval which contains p and is
a subset of M.

Definition 20. The statement that the point set M is aclosedpoint set means
that if p is a limit point of M, then p is in M.

Note that if a setM has no limit point, then it is a closed point set. We
could equivalently define closed by saying thatM is closed if, and only if,
there is no limit point ofM that is not inM.

Theorem 5. If M is a closed point set and M is not all points, then the set
of all points not in M is an open point set.

Theorem 6. If M is an open point set, then the set of all points not in M is
a closed point set.

Theorem 7. If p is a point, there is a sequence of open intervals S1,S2,S3, . . .
each containing p such that for each positive integer n, Sn+1 ⊆ Sn, and p is
the only point that is in every open interval in the sequence.

Definition 21. The statement that the point set M isboundedmeans that M
is a subset of some closed interval.

Definition 22. Let M be a point set. The statement that M isbounded below
means that there is a point z such that z is less than or equal tom for every
m in M. Bounded aboveis defined similarly.

Theorem 8. If the sequence p1, p2, p3, . . . converges to the point x, then
M = {p1, p2, p3 . . .} is bounded.

Axiom 7. The Completeness AxiomIf M is a point set and there is a point
to the right of every point of M, then there is either a right-most point of M
or a first point to the right of M.

Similarly, if there is a point to the left of every point ofM, then there is
either left-most point ofM or a first point to the left ofM.

Theorem 9. (CA) If M is a closed and bounded point set, then there is a
left-most point of M and a right-most point of M.
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Limit Points and Sequences

Definition 23. The statement that the sequence p1, p2, p3, . . . is anincreas-
ing sequence means that for each positive integer n, pn < pn+1.

Definition 24. The statement that the sequence p1, p2, p3, . . . isnon-decreasing
means that for each positive integer n, pn ≤ pn+1.

Decreasingandnon-increasingsequences are defined similarly.

Theorem 10. (CA) If p1, p2, p3, . . . is a non-decreasing sequence and there
is a point, x, to the right of each point of the sequence, then the sequence
converges to some point.

Problem 20. Show that if M is a point set and p is a point and every closed
interval containing p contains a point of M different from p,then p is a limit
point of M.

Problem 21. Show that it is not true that if p is a limit point of a point set M,
then every closed interval containing p must contain a pointof M different
from p.

Problem 22. True or false? If[a,b] is a closed interval and G is a collection
of open intervals with the property that every point in[a,b] is in some open
interval in G then there is a finite subcollection of G with thesame property.

Theorem 11. If M has p as a limit point, then there exists either an increas-
ing or a decreasing sequence of points of M converging to p.

W. Ted Mahavier< W. S. Mahavier www.jiblm.org



Chapter 2

Continuity

It is quite common for mathematicians to come up with more than one defi-
nition for a concept. Two definitions are said to beequivalentif a mathemat-
ical object satisfying either one of the definitions must also satisfy the other.
The following are three equivalent definitions for continuity, one geometri-
cal, one topological (based on open intervals), and one analytical (probably
similar to one you saw in a calculus course).

You might review Definitions 9 and 10 and the discussion following these
definitions before reading the next definition.

Definition 25. The statement that the function f iscontinuousat the point
p = (x,y) means that

1. p is a point on f, and

2. if H and K are any two horizontal lines with p between them, then
there are two vertical lines, h and k with p between them so that if t is
any point in the domain of f between h and k, then(t, f (t)) is in the
rectangle bounded by h,k,H, and K.

Definition 26. The statement that the function f iscontinuousat the point
p = (x,y) means that

1. p is a point on f, and

2. if S isany open interval containing the number f(x), then there is an
open interval T containing the number x such that if t∈ T, and t is in
the domain of f, then f(t) ∈ S.

Definition 27. The statement that the function f iscontinuousat the point
p = (x,y) means that

1. p is a point on f, and

2. if ε is any positive number, then there is a positive numberδ so that if
t is in the domain of f and|t−x| < δ , then| f (t)− f (x)|< ε.
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Continuity

Definition 28. The statement that the function f iscontinuousat the num-
ber x means that x is in the domain of f and f is continuous at thepoint
(x, f (x)).

Definition 29. The statement that f is acontinuous function means that f
is a function which is continuous at each of its points.

Problem 23. Let f be the function such that f(x) = 2 for all numbers x> 5,
and f(x) = 1 for all numbers x≤ 5.

1. Show that f is not continuous at the point (5,1).

2. Show that if t is a number and t> 5, then f is continuous at(t,2).

Problem 24. Show that if f is a function and(x, f (x)) is a point on f , and
x is not a limit point of the domain of f , then f is continuous at(x, f (x)).

Problem 25. Let f be the function such that f(x) = x2 for all numbers x.
Show that f is continuous at the point (2,4).

Problem 26. If f is a function which is continuous on[a,b] and x∈ (a,b)
such that f(x) > 0 then there exists an open interval, T, containing x such
that f(t) > 0 for all t ∈ T.

Theorem 12. If f is a function and x1,x2,x3, . . . is a sequence of points
in the domain of f converging to the number x in the domain of f,and f is
continuous at(x, f (x)), then f(x1), f (x2), . . . converges to f(x).

The converse of this statement is that iff is a function so that for every
sequencex1,x2,x3, . . . in the domain off converging to a pointx we have
that f (x1), f (x2), . . . converges tof (x) then f is continuous atx. This gives
us a fourth equivalent definition for continuity of a function.

Definition 30. We say that a function f iscontinuousat the point x if and
only if for every sequence p1, p2, p3, . . . in the domain of f converging to x
we have that f(p1), f (p2), . . . converges to f(x).

Definition 31. If f and g are functions and there is a point common to the
domain of f and the domain of g, then f+g denotes the function h such that
for each number x in the domain of both of f and g, h(x) = f (x)+g(x).

Theorem 13. If each of f and g is a function, x is a point in the domain of
each of f and g, f is continuous at the point(x, f (x)), g is continuous at the
point (x,g(x)), and h= f +g, then h is continuous at the point(x,h(x)).

We can’t prove everything in the given time, but we’ll assumeadditional
theorems as needed about continuity. For example we’ll assume that under
appropriate conditions, the product, quotient, and composition of continu-
ous functions are continuous and that all polynomials are continuous.
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Continuity

Theorem 14. Suppose f and g are functions having domain M and each is
continuous at the point p in M. Suppose that h is a function with domain M
such that f(p)=h(p)=g(p) and for each number x in M, f(x) ≤ h(x) ≤ g(x).
Prove h is continuous at p.

Theorem 15. (CA) If I1, I2, I3, . . . is a sequence of closed intervals such that
for each positive integer n, In+1 ⊆ In, then there is a point p such that if n is
any positive integer, then p is in In. In other words, there is a point p which
is in all the closed intervals of the sequence I1, I2, I3, . . . .

Theorem 16. (CA) If I1, I2, I3, . . . is a sequence of closed intervals so that
for each positive integer n, In+1 ⊆ In, and the length of In is less than1

n, then
there is only one point p such that for each positive integer n, p∈ In.

Theorem 17. If f is a continuous function whose domain includes the closed
interval [a,b] and there is a point x in[a,b] so that f(x) is greater than or
equal to zero, then the set of all numbers x∈ [a,b] such that f(x) ≥ 0 is a
closed point set.

Theorem 18. If f is a continuous function whose domain includes a closed
interval [a,b] and p∈ [a,b], then the set of all numbers x∈ [a,b] such that
f (x) = f (p) is a closed point set.

Definition 32. The statement that the point sets H and K aredisjoint or
mutually exclusivemeans that they have no point in common.

Theorem 19.(CA) No closed interval is the union of two mutually exclusive
closed point sets.

Problem 27. (CA) If f is a function with domain the closed interval[a,b]
and the range of f is{−1,1}, then there is a number x in[a,b] at which f is
not continuous.

Theorem 20. (CA) Let f be a continuous function whose domain includes
the closed interval[a,b]. If f (a) < 0 and f(b) > 0, then there is a number x
between a and b such that f(x) = 0.

Theorem 21. If f is a continuous function whose domain includes a closed
interval [a,b], and L is a horizontal line, and(a, f (a)) is below L, and
(b, f (b)) is above L, then there is a number x between a and b such that
(x, f (x)) is on L.
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Chapter 3

Differentiability

As with continuity, we offer three equivalent definitions ofderivative, one
geometric, topological, and one analytical.

Definition 33. The non-vertical line L istangent to the function f at the
point P = (x,y) means that:

1. x is a limit point of the domain of f,

2. P is a point of L, and

3. if A and B are non-vertical lines containing P with the lineL between
them (except at P), then there are two vertical lines H and K with P
between them such that if Q is a point of f between H and K which is
not P, then Q is between A and B.

In the previous definition we write that we have three distinct lines,A,B,
andL with L between AandB (except atP). By this we mean that for any
point l on L (exceptP) there is a pointa on A and a pointb on B so that
eithera is belowl which is belowb or thatb is belowl which is belowa.

Definition 34. If f is a function, then the statement that f has aderivative
at the number a in the domain of f means that f has a non-vertical tangent
line at the point(a, f (a)). We use the notation f′(a) to denote the slope of
the line tangent to f at the point(a, f (a)) and f′(a) is called thederivative
of f at a.

Definition 35. If f is a function, the statement that f hasderivative D at the
number x in the domain of f means that

1. x is a limit point of the domain of f , and

2. if S is an open interval containing D, then there is an open interval T
containing x such that if t is a number in T and in the domain of fand
t 6= x, then

f (t)− f (x)
t−x

∈ S.
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Differentiability

As an alternative to this definition:

Definition 36. If f is a function, the statement that f hasderivative D at the
number x in the domain of f means that

1. x is a limit point of the domain of f , and

2. if ε is a positive number, then there is a positive numberδ such that if

t is in the domain of f and|t−x| < δ then

∣

∣

∣

∣

f (t)− f (x)
t −x

−D

∣

∣

∣

∣

< ε.

Problem 28. Use any of the definitions ofderivative to show that if f(x) =
x2 +1 then f′(3) = 6.

Problem 29. Use the definition of tangent to show that if f is a func-
tion whose domain includes(−1,1), and for each number x in(−1,1),
−x2 ≤ f (x) ≤ x2, then the x-axis is tangent to f at the point(0,0).

Problem 30. Use any of the definitions of derivative to show that if f is a
function whose domain includes(−1,1) and for each number x in(−1,1),
−x2 ≤ f (x) ≤ x2, then the derivative of f at the point(0,0) is 0.

Theorem 22. If f is a function, and x is in the domain of f, then f does not
have two tangent lines at the point(x, f (x)).

Definition 37. If f is a function which has a derivative at some point, then
thederivative of f is the function denoted by f′, such that for each number
x at which f has a derivative, f′(x) is the derivative of f at x.

Definition 38. If M is a point set, then theclosureof M is the set consisting
of M together with any limit points of M. It is denoted by Cl(M) or byM.

Theorem 23. If M is a point set then Cl(M) is a closed point set.

From this point forward we may useR to represent the set of real num-
bers andD f to denote the domain off .

Theorem 24. Suppose that f is a function that is differentiable at the point
p and that c∈ R. Show that the function g defined by g(x) = c f(x) for all
x∈ D f is also differentiable at the point p.

Theorem 25. Suppose that each of f and g are functions that are differen-
tiable at the point p and that h is the function defined by h(x) = f (x)+g(x)
for all x ∈ D f . Show that h is also differentiable at the point p.

Theorem 26. If f is a function, x is in the domain of f, and f has a derivative
at (x, f (x)), then f is continuous at(x, f (x)).

Theorem 27. If f is a function, Df ⊆ [a,b], x∈ (a,b), f(x) ≥ f (t) for all
t ∈ (a,b), and f has a derivative at x, then f′(x) = 0.
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Differentiability

Problem 31. Does there exist a function f defined and continuous on[0,1]
such that f(0) = 0 and f(1) = 1 and f′(x) = 0 at all but countably many
points of[0,1]?

We can’t prove everything we need, but at this point, you could prove
that all polynomials are differentiable. You could also prove all the theorems
about differentiability: the power rule, constant rule, sum rule, product rule,
and quotient rules.
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Chapter 4

Riemann Integration

We have already shown that ifM is a bounded point set, then eitherM has a
right-most point or there is a first point to the right ofM. We shall call this
number, whichever it is, theleast upper bound ofM, and we will denote it
by lub(M). Similarly if a setM has a left-most point or a first point to the left
of M, then we will refer to this point as thegreatest lower bound ofM and
denote it byglb(M). Some mathematicians use the notation,supremum of
M andinfimum of M respectively.

We won’t present the next two problems, but you may use them ifyou
need them.

Problem 32. If H and K are bounded sets and H⊆ K then glb(K) ≤
glb(H).

Problem 33. If each of H and K are bounded sets and H⊕K = {h+k : h∈
H,k∈ K} then glb(H)+glb(K) = glb(H ⊕K).

Definition 39. A bounded function is a function with bounded range.

Definition 40. If [a,b] is a closed interval, by apartition of [a,b] is meant
a set of points{t0, t1, . . . , tn} satisfying a= t0 < t1 < t2 < · · ·< tn−1 < tn = b.

For the next four definitions, assume thatf is a bounded function with
domain the closed interval[a,b].

Definition 41. The statement that the number S is aRiemann sumfor f on
[a,b] means that there is a partition{t0, t1, . . . , tn} of [a,b] and a sequence
x1,x2, . . . ,xn of numbers such that xi ∈ [ti−1, ti] for i = 1,2,3, . . . ,n and S=
n

∑
i=1

f (xi)(ti − ti−1).

Definition 42. The statement that the number S is theupper Riemann sum
for f on [a,b] means that there is a partition{t0, t1, . . . , tn} of [a,b] and a
sequence y1,y2, . . . ,yn of numbers such that yi = lub{ f (x)|x∈ [ti−1, ti]} for

i = 1,2, . . . ,n and S=
n

∑
i=1

yi(ti − ti−1).
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Riemann Integration

Definition 43. We define thelower Riemann sumin the same way except
that yi = glb{ f (x)|x∈ [ti−1, ti]} for each positive integer i= 1,2, . . . ,n.

If f is a bounded function with domain the closed interval[a,b] andP
is a partition of[a,b], thenUP( f ) andLP( f ) denote the upper and lower
Riemann sums off .

Problem 34. Let f(x) = 0 for each number x in[0,1] except x= 0, and let
f (0) = 1. Show that:

1. if P is a partition of[0,1], then0 < UP f ,

2. if ε > 0, then there is a partition P of[0,1] such that UP f < ε, and

3. zero is the only lower Riemann sum for f on[0,1].

Theorem 28. If p1, p2, p3, . . . is a sequence of points in the closed interval
[a,b], then there is a point in[a,b] which is not in the sequence p1, p2, p3, . . . .

Theorem 29. If x is a limit point of the point set M, then there is a se-
quence of points p1, p2, p3, . . . of M, all different and none equal to x which
converge to x.

Theorem 30. If x1,x2,x3, . . . is a sequence of distinct points in the closed
interval [a,b], then the range of the sequence has a limit point.

A consequence of Theorem 30 is that every infinite bounded sethas a
limit point.

Theorem 31. If f is a function with domain[a,b], and f is continuous at
each number in[a,b], then the range of f is a closed point set.

Theorem 32. If f is a function with domain[a,b] and f is continuous at
each number in[a,b], then the range of f is bounded.

Theorem 33. If f is a continuous function with domain[a,b], then there is
a number x∈ [a,b] such that if t∈ [a,b], then f(t) ≤ f (x).

Definition 44. If f is a bounded function with domain the closed interval
[a,b], then theupper integral from a to b of f is the greatest lower bound of

the set of all upper Riemann sums for f on[a,b] and is denoted byU

∫ b

a
f .

Thelower integral from a to b of f is the least upper bound of the set of all

lower Riemann sums for f on[a,b] and is denoted byL

∫ b

a
f .

Definition 45. If f is a bounded function with domain[a,b], then the state-

ment that f isRiemann integrableon [a,b] means thatL

∫ b

a
f =U

∫ b

a
f .
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Riemann Integration

When a function is Riemann integrable, we drop the subscriptsU andL

and refer to
∫ b

a
f as theRiemann integral of f .

Theorem 34. Show that if f is a function whose domain includes the closed
interval [a,b], and for each number x in[a,b], m≤ f (x) ≤ M, and P=
{t0, t1, . . . , tn} is any partition of[a,b], then UP f ≤ M(b−a) and LP( f ) ≥
m(b−a).

Theorem 35. If f is a bounded function with domain the closed interval
[a,b], and P is a partition of[a,b], then LP( f ) ≤UP( f ).

Theorem 36. If f is bounded on[a,b] then the set of all Riemann sums of f
is bounded.

Theorem 37. If f is a bounded function with domain[a,b], and for each
number x in[a,b], f(x) ≥ 0, and for some number z in[a,b], f(z) > 0 and f

is continuous at z, thenU

∫ b

a
f > 0.

Definition 46. The statement that the partition Q of the closed interval[a,b]
is a refinement of the partition P of[a,b] means that P⊆ Q.

Theorem 38. If P1 and P2 are partitions of [a,b] then there exists a partition
Q of [a,b] so that Q is a refinement of both P1 and P2.

Theorem 39. If f is a bounded function with domain the closed interval
[a,b], P is a partition of[a,b], Q is a partition of[a,b], and Q is a refinement
of P, then LP( f ) ≤ LQ( f ) and UP( f ) ≥UQ( f ).

Theorem 40. If f is a bounded function with domain[a,b], thenL

∫ b

a
f ≤

U

∫ b

a
f .

Theorem 41. If f is a continuous function with domain the closed interval
[a,b], andε is a positive number, then there is a partition{x0,x1,x2, . . . ,xn}
of the closed interval[a,b] such that for each positive integer i not larger
than n, if u and v are two numbers in the closed interval[xi−1,xi ], then
| f (u)− f (v)| ≤ ε.

Theorem 42. If f is a continuous function with domain a closed interval,
then the range of f contains only one value or it is a closed interval.

Theorem 43. If f is a bounded function with domain the closed interval
[a,b] and for each positive numberε, there is a partition P of[a,b] such
that UP( f )−LP( f ) < ε, then f is Riemann integrable on[a,b].

Theorem 44. If f is a continuous function with domain the closed interval
[a,b], then f is Riemann integrable on[a,b].
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Riemann Integration

Definition 47. A function f isincreasing if for each pair of points x and y
in the domain of f satisfying x< y we have f(x) < f (y). The function is
non-decreasingif under the same assumptions we have f(x) ≤ f (y).

Theorem 45. Every non-decreasing bounded function on[a,b] is Riemann
integrable on[a,b].

Theorem 46. If [a,b] is a closed interval and c∈ (a,b) and f is integrable

on [a,c] and on[c,b] and on[a,b], then
∫ c

a
f +

∫ b

c
f =

∫ b

a
f .

Definition 48. If [a,b] is a closed interval and f is integrable on[a,b] then

we define
∫ a

b
f = −

∫ b

a
f and

∫ a

a
f = 0.

Theorem 47. If f is a continuous function with domain the closed interval

[a,b], then there is a number c in[a,b] such that
∫ b

a
f = f (c)(b−a).

Theorem 48. If f is a continuous function with domain the closed interval

[a,b] and F is the function such that for each number x in[a,b], F(x) =

∫ x

a
f ,

then for each number c in[a,b] F has a derivative at c and F′(c) = f (c).

Theorem 49. If f is a function with domain the closed interval[a,b] and f
has a derivative at each point of[a,b] and f′ is continuous at each point in

[a,b], then
∫ b

a
f ′ = f (b)− f (a).
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Chapter 5

Miscellany

Some material in this chapter is pre-requisite for the next chapter.

Theorem 50. If f is continuous at the point p and K is a subset of the
domain of f and p is a limit point of K, then p∈Cl( f (K)).

Theorem 51. If f is an integrable function, then|
∫ b

a
f | ≤

∫ b

a
| f |.

Lemma 52. Suppose f is a function whose domain includes[a,b], f (a) =
0= f (b), and f has a derivative at each of its points. Then there is a number
c in (a,b) such that f′(c) = 0.

Theorem 53. If f is continuous on[a,b] and g(x) =
∫ x

a
f for all x ∈ [a,b]

then g is continuous on[a,b].

Theorem 54. Suppose f is a non-decreasing function whose domain in-
cludes[a,b] and f has a derivative at each of its points, then there is a
number c in (a,b) such that f′(c) is the same as the slope of the line joining
the two points(a, f (a)) and(b, f (b)).

Although we stated the previous theorem only for non-decreasing func-
tions, it is valid for any differentiable function defined on[a,b] and differ-
entiable on(a,b). You may use the more general statement if you require it
later.

Definition 49. A set iscountable if it is the range of some sequence.

Theorem 55. All finite sets, the natrual numbers, the integers and the ra-
tionals numbers are countable.

Theorem 56.Every countable closed set has a point that is not a limit point
of the set.

Theorem 57. The real numbers are not countable.
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Miscellany

Theorem 58. If f is continuous on the closed interval[a,b] and M⊆ [a,b]
is closed then f(M) is closed.

Problem 35. Show there exists a function f that is continuous at a point x
which is a limit point of points at which f is not continuous.

Problem 36. Show that there exists a function f that is nowhere continuous
on [0,1].

Definition 50. If A and B are sets, then A−B = {x∈ A : x is not in B}.

Theorem 59. If M is a countable subset of[a,b] then every point of M is a
limit point of [a,b]−M.

Definition 51. A function f isuniformly continuous on the set M if for
everyε > 0 there exists a numberδ > 0 so that if u,v∈ M and |u−v| < δ
then| f (u)− f (v)|< ε.

Theorem 60.A function f is continuous on[a,b] if and only if f is uniformly
continuous on[a,b].

A stronger results holds: a function defined and continuous on any closed
and bounded (compact) subset of the reals is uniformly continuous on that
domain.

Problem 37. Show that there exists a function f that is continuous on(a,b)
but not uniformly continuous on(a,b).

A shorthand for the sequencea1,a2,a3, . . . is (an)
∞
n=1.

Definition 52. If (an)
∞
n=1 is a sequence then the sequence ofpartial sums

of (an)
∞
n=1 is the (new) sequence defined by SN =

N

∑
n=1

an, N = 1,2,3, . . . . If

the sequence of partial sums(SN)∞
N=1 converges then we define the point

to which this sequence converges to be theinfinite series associated with

(an)
∞
n=1 and denote it by

∞

∑
i=1

ai .

Theorem 61. If (an)
∞
n=1 is a sequence and

∞

∑
i=1

|ai| converges then
∞

∑
i=1

ai con-

verges.

Definition 53. A function f is called aLipschitz function if there exists c≥ 0
such that for every pair u,v in the domain of f, | f (u)− f (v)| ≤ c|u−v|.

Problem 38. Show that there exists a function that is Lipschitz on[a,b] but
not differentiable on[a,b].

Theorem 62. Show that every Lipschitz function is uniformly continuous.
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Miscellany

Definition 54. If f1, f2, f3, . . . is a sequence of functions with a common
domain D then we say that f1, f2, f3, converges pointwiseon D if there is
a function f defined on D so that for each x∈ D the sequence( fn(x))∞

n=1
converges to f(x).

Definition 55. If f1, f2, f3, . . . is a sequence of functions with a common
domain D then we say that f1, f2, f3, converges uniformlyon D if there is
a function f defined on D so that for allε > 0 there is a natural number
N so that for all natural numbers n> N and for all x∈ D we have| f (x)−
fn(x)| < ε.

Problem 39. Show there is a sequence of continuous functions, f1, f2, f3, . . .
converging pointwise to a function that is not continuous.

Problem 40.Show there is a sequence of differentiable functions, f1, f2, f3, . . .
converging pointwise to a function that is not continuous.

Theorem 63. Show that if f1, f2, f3, . . . is a sequence of continuous func-
tions converging uniformly to the function f then f is continuous.
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Chapter 6

Successive Approximations

In this section, we use successive approximations to demonstrate the ex-
istence of a unique solution to the differential equation,y′ = y,y(0) = 1,
which you will recall from calculus is the function,E(x) = ex. There are
many ways to define the “exponential function.” Here are a few.

1. Define sequences and convergence, then show that the sequence,an =
(1+ 1

n)n for n = 1,2, . . . is increasing and bounded above. Then apply
the completeness axiom to assure that it converges to some number.
Call that numbere. Define general exponential functions of the form
f (x) = bx. Whenb = e you have the natural exponential function.

2. Develop differential and integral calculus and then define the integral

L(x) =
∫ x

1

1
t

dt. Show that this function is strictly increasing, hence

one-to-one and then define a functionE, the natural exponential func-
tion, to be the inverse ofL.

3. Develop sequences, series, and convergence and show thatfor each

real number,x, the series
∞

∑
i=0

xi

i!
converges. Now defineE(x) =

∞

∑
i=0

xi

i!
.

4. Develop differential and integral calculus and then consider the ques-
tion, does there exist a functionf that satisfies:

i. f (0) = 1 and

ii. f ′(t) = f (t) for all t ∈ R?

All of these approaches lead to the functionsE(x) = ex andL(x) = ln(x)
that you are familiar with. It is the latter path that we take because it makes
use of much of the analysis that you have already developed and serves as a
brief introduction to series.

Problem 41 is a “warm-up” for the next sequence of problems. For this
problem, assume that you do know that the functionE(x) = ex exists and
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Successive Approximations

that you remember all your calculus(!) and that the usual rules of differen-
tiation and integration apply. Forthis problem only, if you need a reminder
of Taylor series, you may look at the web or a book.

Problem 41. Successive approximations, Picard’s iterates.

1. Compute the Taylor Series for E(x) = ex.

2. Show that if y is differentiable on[0,1] and y′(t) = y(t) for all t ∈ [0,1]

and y(0) = 1 then y(t) = 1+
∫ t

0
y.

3. Show that if y is differentiable on[0,1] and y(t) = 1+
∫ t

0
y then y′ = y

and y(0) = 1.

4. Let y0 = 1 and yn = y0 +

∫ t

0
yn−1 for all n = 1,2, . . . and compute by

hand y0,y1,y2, . . . .

Now that you’ve completed the “warm-up” exercise, forget that you
know that there exists a functionE(x) = ex and close your calculus book
or website.

Theorem 64.Suppose0< r < 1 and define a sequence by Sn =
n

∑
i=0

r i for all

n = 1,2, . . . . Show that S1,S2,S3, . . . converges to
1

1− r
.

Theorem 65.Suppose that c is a number between0 and1 and a0,a1,a2, . . .
is a sequence of positive numbers and ai < cai−1 for all i = 1,2, . . . and

Sn =
n

∑
i=0

ai for all n = 1,2, . . . . Show that the sequence S1,S2, . . . converges.

Theorem 66. For each natural number n define the function fn by fn(x) =
n

∑
k=0

xk

k!
for every x∈ [0,1]. Show that fn is continuous on[0,1].

Theorem 67.Let f1, f2, . . . be the sequence of functions defined in the previ-
ous problem and show that if x∈ [0,1] then f1(x), f2(x), f3(x) . . . converges
to some number.

Since for eachx ∈ [0,1] the sequencef1(x), f2(x), f3(x) . . . , converges
we may define a functionf on [0,1] as follows: for eachx∈ [0,1] let f (x)
be the number to whichf1(x), f2(x), f3(x) . . . converges. Now we have that
the sequencef1, f2, f3, . . . convergespointwiseto f on [0,1].

Theorem 68. Show that the sequence of functions defined in the previous
problem converges uniformly on[0,1].
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Successive Approximations

Theorem 69. If f1, f2, . . . converges uniformly to f on[0,1] and s∈ [0,1]

and
∫ s

0
fn exists for all n= 1,2, . . . then the sequence of numbers

∫ s

0
f1,

∫ s

0
f2, . . .

converges to the number
∫ s

0
f .

Theorem 70. Let f be the function defined by Theorem 66 and g be the

function defined by g(s) = 1+
∫ s

0
f . Show that f= g on[0,1] and f(0) = 1.

Theorem 71. Show that if L is the function with domain all differentiable
functions and defined by L(u) = u′−u then y= 0 is the unique solution to
L(y) = 0 and y(0) = 0.

Theorem 72. Suppose t0,x0 ∈ R and show that there are not two solutions
to L(y) = 0 and y(t0) = x0.

Theorem 73. Show there is a unique solution to the initial value problem
y′′+y = 0,y(0) = 0,y′(0) = 1 as follows:

1. Convert the second order equation to a first order system,
(

u
v

)′

= A

(

u
v

)

,

(

u
v

)

(0) =

(

0
1

)

where A is a2×2 matrix.

2. Apply Picard’s iteration to obtain sequences of functions, u0,u1, . . .
and v0,v1, . . .

3. Show that there are functions u and v so that(un)
∞
n=1→ u and(vn)

∞
n=1→ v

and

(

u
v

)

is a solution to the .
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Chapter 7

Subsequences and Cauchy Sequences

Definition 56. The statement that q1,q2,q3, . . . is asubsequenceof p1, p2, p3, . . .
means that there is an increasing sequence of natural numbers, n1,n2,n3, . . .
such that for each natural number i, we have pni = qi .

Example: Supposep1, p2, p3, . . . is a sequence andn is a function with
domain the natural numbers defined byn(k) = 2k. Thenn defines the sub-
sequence:p2, p4, p6, . . . .

Theorem 74. Suppose that q1,q2,q3, . . . is a subsequence of p1, p2, p3, . . . .
Show that if there is a number x so that p1, p2, p3, . . . converges to x then
q1,q2,q3, . . . converges to x.

Problem 42. Suppose that q1,q2,q3, . . . is a subsequence of p1, p2, p3, . . .
and there is a number x so that q1,q2,q3, . . . converges to x. Is it true that
p1, p2, p3, . . . converges to x?

Problem 43. Suppose that(pn)
∞
n=1 is a sequence of points in the closed

interval [a,b]. Is it true that every subsequence of(pn)
∞
n=1 converges to

some point in[a,b]?

Definition 57. A set of numbers K iscompact if every sequence of points
in K has a subsequence that converges to some point in K.

Theorem 75. Show that every closed interval is compact.

Theorem 76. If x is a limit point of{p0, p1, p2, . . .} and every subsequence
of (pn)

∞
n=1 converges then(pn)

∞
n=1 converges to x.

Theorem 77. Show that every closed and bounded set inR is compact.

Previously, we proved that every infinite bounded set has a limit point.
Now we have the equivalent to this statement for sequences, that every se-
quence with infinite bounded range has a convergent subsequence.

Definition 58. The statement that the sequence p1, p2, p3, . . . is a Cauchy
sequencemeans that ifε is a positive number, then there is a positive integer
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Subsequences and Cauchy Sequences

N such that if n is a positive integer and m is a positive integer, n ≥ N, and
m≥ N, then the distance from pn to pm is less thanε.

Theorem 78. The sequence p1, p2, p3, . . . is a Cauchy sequence if and only
if it is true that for each positive numberε, there is a positive integer N such
that if n is a positive integer and n≥ N, then|pn− pN| < ε.

Theorem 79. If the sequence p1, p2, p3, . . . converges to a point x, then
p1, p2, p3, . . . is a Cauchy sequence.

Theorem 80.If p1, p2, p3, . . . is a Cauchy sequence, then the set{p1, p2, p3, . . .}
is bounded.

Theorem 81.If p1, p2, p3, . . . is a Cauchy sequence, then the set{p1, p2, p3, . . .}
does not have two limit points.

Theorem 82. If p1, p2, p3, . . . is a Cauchy sequence, then the sequence
p1, p2, p3, . . . converges to some point.
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Chapter 8

Basic Set Theory

We now modify our notion offunctionso that the domain and range are not
restricted to subsets of the real numbers. From this point on, we will also
allow the possibility that a set is empty.

Definition 59. Given two sets X and Y, X ×Y = {(x,y) : x ∈ X,y∈ Y}. A
relation on X×Y is a subset of X×Y. Afunction on X×Y is a relation on
X×Y with the property that no two elements have the same first coordinates.
The set of all first coordinates is called thedomain of the function and the
set of all second coordinates is called therangeof the function.

For a function f on X ×Y we will write f : X → Y and if (u,v) is an
element off then we will use the notation,f (u) = v. In this case, we say
that f mapsu to v.

Definition 60. If f : X → Y is a function, then f isinjective (one-to-one)
if no two elements of X map to the same element in Y. We say that f is
surjective (onto) if for each element y∈ Y there is some element x∈ X
such that f(x) = y. We call an injective function aninjection, a surjective
function asurjection, and a function that is both injective and surjective a
bijection.

Every functionf : X →Y is a surjection onto its range.

Theorem 83. Let f : X →Y be a surjection. Show that f is injective if and
only if there is a function g: Y → X so that g( f (x)) = x for all x∈ X.

Definition 61. Given a function f: X → Y, the relation f−1 is defined by
f−1 = {(v,u) : (u,v) ∈ f}.

The setf−1 might not be a function. Iff is injective then by Theorem
83 we have thatf−1 is a function.

From this point forward, we may use (i) “∃” to mean “there exists,” (ii)
“ 6∈” to mean “is not in” and (iii) “∋” to mean “such that.”
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Basic Set Theory

Definition 62. If f : X → Y and A⊆ X then theimage of A under f is
{ f (x) : x∈ A} and is denoted by f(A). More precisely, f(A) = {y∈Y : ∃x∈
A∋ f (x) = y}.

Definition 63. If f : X →Y and A⊆Y then theinverse image ofA under
f is {x∈ X : f (x) ∈ A} and is denoted by f−1(A). This is often called the
pre-image ofA.

Question 1. Are problems 62 and 63 acceptable definitions or are they an
abuse of notation?

Theorem 84. Show that if f: X →Y then f is surjective if and only if the
inverse image of every non-empty subset of Y is non-empty.

Definition 64. Assume that each of A and B are subsets of the set X. Assume
that Λ is a set and that Aλ is a subset of X for eachλ ∈ Λ. Λ is called an
index set.

1. /0 = the empty set

2. Ac = {x∈ X : x 6∈ A}

3. A∪B = {x∈ X : x∈ A or x∈ B}

4. A∩B = {x∈ X : x∈ A and x∈ B}

5.
⋃

λ∈Λ Aλ = {x∈ X : x∈ Aλ for someλ ∈ Λ}

6.
⋂

λ∈Λ Aλ = {x∈ X : x∈ Aλ for everyλ ∈ Λ}

We won’t present the next theorem. You only need to write downa proof
if you cannot write down a proof.

Theorem 85. Assume that each of A,B and C are subsets of the set X.

1. A∪B = B∪A and A∩B = B∩A

2. A∪ /0 = A and A∩ /0 = /0

3. A∪X = X and A∩X = A

4. A∩ (B∪C) = (A∩B)∪ (A∩C) and A∪ (B∩C) = (A∪B)∩ (A∪C)

5. (Ac)c = A, A∩Ac = /0, /0c = X, and Xc = /0

6. A⊆ B ⇐⇒ Bc ⊆ Ac

Theorem 86. Assume thatΛ is a set and that Aλ is a set for eachλ ∈ Λ.
Show that

1. (
⋃

λ∈Λ Aλ )c =
⋂

λ∈Λ (Aλ )c,

2. (
⋂

λ∈Λ Aλ )c =
⋃

λ∈Λ (Aλ )c,
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3. A∩ (
⋃

λ∈Λ Aλ ) =
⋃

λ∈Λ(A∩Aλ ), and

4. A∪ (
⋂

λ∈Λ Aλ ) =
⋂

λ∈Λ(A∪Aλ ).

Theorem 87. Assume that f: X →Y is a function,Λ is a set, and Bλ is a
subset of Y for eachλ ∈ Λ. Show that

1. f−1(
⋃

λ∈Λ Bλ ) =
⋃

λ∈Λ f−1(Bλ ), and

2. f−1(
⋂

λ∈Λ Bλ ) =
⋂

λ∈Λ f−1(Bλ ).

Theorem 88. Assume that f: X →Y is a function and D is a subset of Y .
Show that

(

f−1(D)
)c

= f−1(Dc).

Theorem 89.Assume that f: X →Y is a function, A⊆X, and D⊆Y. Show
that

1. f( f−1(D)) ⊆ D,

2. f−1( f (A)) ⊆ A, and

3. if f is surjective, then f( f−1(D)) = D.
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Chapter 9

Measure Theory

Theorem 90. If O is a bounded open set and p is a point of O then there is
a unique open interval containing p which is a subset of O whose endpoints
do not lie in O.

Now that we know that the intervals described in Theorem 90 exist, we
can formally define them and give them a name.

Definition 65. If O is a bounded open set and p∈ O then the open interval
containing p which is a subset of O and whose endpoints are notin O is
called thecomponent of O containing p.

Theorem 91. If O is a bounded open set, then the set of all components of
O is a countable collection of mutually disjoint open intervals whose union
is O.

Definition 66. If S is any interval (open, closed, or half-open), then we
define L(S) to be thelength of S. For example, if S= [a,b], then L(S) =
b−a. If G is a finite collection of mutually disjoint open intervals then L(G)
denotes the sum of the lengths of the elements of G. If G= {g1,g2,g3, . . .} is
a countable collection of mutually disjoint open intervalslying in an open
interval, then L(G) = ∑∞

i=1L(gi).

Theorem 92. If G is a finite collection of mutually disjoint open intervals
lying in the open interval (a,b), then L(G) ≤ b−a.

Theorem 93. If G is a countable collection of mutually disjoint open inter-
vals lying in the open interval (a,b) then L(G) ≤ b−a.

Definition 67. If G is a collection of point sets then G∗ denotes the set which
is the union of the members of G; that is, G∗ =

⋃

g∈Gg.

Theorem 94. If G and H are countable collections of mutually disjoint open
intervals and G∗ ⊆ H∗, then L(G) ≤ L(H).

Definition 68. A point set M is said to beclosedif and only if no point not
in M is a limit point of M.
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Theorem 95. If O is an open set which is a subset of the closed interval
[a,b], then [a,b]-O is a closed point set, and if M is a closed point set which
lies in an open interval (a,b), then (a,b)-M is an open set.

Definition 69. The statement thatthe set G of open intervals properly
covers the set Mmeans that every point of M lies in a member of G and
every member of G contains a point of M.

Definition 70. If M is a bounded point set then by theouter measure of
M , denoted mo(M), is meant the greatest lower bound of the set of all L(G)
where G is any collection of mutually disjoint open intervals which properly
cover M.

Theorem 96.Show that if M is a countable point set then the outer measure
of M is zero.

Theorem 97. If O is a bounded open set and G is the set of all components
of O, then mo(O) = L(G).

Theorem 98. If [a,b] is a closed interval, then mo([a,b]) = b−a.

Theorem 99.If M is a bounded point set and I and J are two closed intervals
containing M, and I⊂ J, then mo(I)−mo(I −M) = mo(J)−mo(J−M).

Theorem 100. If M is a bounded point set and I and J are two closed inter-
vals containing M, then mo(I)−mo(I −M) = mo(J)−mo(J−M).

Definition 71. If M is a bounded point set, thenthe inner measure of M,
denoted mi(M), means mo(I)−mo(I −M) for some closed interval, I, con-
taining M.

Definition 72. The statement that the point set M ismeasurablemeans that
mo(M) = mi(M). When M is measurable, mo(M) is called the measure of
M and denoted by m(M).

Theorem 101. If M is a bounded, measurable set, and I is a closed interval
containing M, then I-M is measurable.

Theorem 102. If H and K are disjoint, bounded sets, then mo(H ∪K) ≤
mo(H)+mo(K).

Theorem 103.If H and K are disjoint, bounded measurable sets then H∪K
is measurable.

Theorem 104.If H and K are disjoint, bounded measurable sets then m(H∪
K) = m(H)+m(K).

Theorem 105. If M is a closed interval or an open interval, then M is mea-
surable and L(M) = m(M).

Theorem 106. If G is a collection of open intervals covering the closed
interval [a,b] then there is a finite subcollection of G which also covers
[a,b].
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Chapter 10

Conclusion

Congratulations! You have come a long way since the definition of a limit
point. The theorems that you proved on your journey are essential to many
areas of mathematics including topology, complex analysis, functional anal-
ysis, real variables and measure theory. Perhaps as important as the results
is the fact that you proved many of them on your own. Sadly, many an un-
dergraduate has graduated with a degree in mathematics without the ability
to either prove theorems on his or her own, or even understandthe proof of a
theorem as presented by another. Because of this, I know first-hand of grad-
uate programs where a course equivalent to this course is taken forgraduate
credit because incoming students are unprepared to prove theorems. Even
a student who graduates in mathematics without this skill should at least
have a deep appreciation for this process that is so fundamental to the na-
ture of the subject. Many undergraduate programs have avoided the issue of
teaching students to prove theorems because of the difficulty of this daunt-
ing task. Applied programs often have minimal courses designed to train
students in creating mathematics, rather they emphasize learning and apply-
ing mathematical results. While both have value, many of thebest applied
mathematicians are also pure mathematicians because not every problem is
a direct application of a theorem. Sometimes the theorems must be modified
or built to fit the application at hand.

Now let’s talk about some of the important results that you have devel-
oped during this semester. I will speak loosely here withoutthe precision
to which you have been accustomed. Consider this a furtherance of your
mathematical training. Many of the mathematicians you willencounter in
the future will not be as precise with the language as we have been in this
class. Just translate their work into nice precise mathematics just as you
translated my rough proofs into precise mathematics when you let (made?)
me present material on those rare days when you did not have mathematics
to show off to the class. You can start practicing on what I have written
below.
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Conclusion

We started with limit points and convergence, two importantunderlying
concepts in analysis and topology. And we played a bit with the study of
open and closed sets. This is at the very heart of topology andanalysis be-
cause we define continuity in terms of open sets. Therefore, if we change
the definition of an open set, then we change the continuous functions. Go
ahead, change “open interval” to “closed interval” in the definition of con-
tinuity and ask, “Which functions are continuous now?” The theorems that
we proved that were topological in nature were 15 and 16 whichshow that
the intersection of a nested sequence of closed intervals results in a point
or a closed interval. Together these are referred to as theNested Interval
Theorem. In topology you will see generalizations of this – that the arbi-
trary union of open sets is open and the arbitrary intersection of closed sets
is closed. In Problem 27 you showed that no sequence could fillthe closed
interval, [0,1]. This shows that the real line is not countable since a set is
countable precisely when there is some sequence whose rangeis that set.
Problem 30 is theBolzano-Wierstrauss Theoremand states that every infi-
nite bounded set has a limit point. A consequence of this result that we used
regularly was that every bounded sequence has a convergent subsequence.

We discussed four equivalent definitions of continuity, Definitions 25,
26, 27 and 30. The second will be generalized in a topologicalsetting by
writing thata function is continuous if and only if the inverse image of an
open set under f is open. The third is the definition most often shown to
calculus students. The fourth is the analyst’s definition, that a functionf is
continuous if for every sequence converging tox, the sequence obtained by
applying f to the original sequence converges tof (x). You also proved that
the sum of two continuous functions is continuous in Theorem13. Along
the way, we showed several properties of continuous functions. Together
Theorems 32 and 33 showed that every continuous function on aclosed
interval has a maximum and a minimum value and attains those values.
This is known as theExtreme Value Theorem. This theorem along with
the Intermediate Value Theorem, Theorem 21, yielded that the range of a
continuous function on a closed interval is either a point ora closed interval,
Theorem 42.

Knowing that the maximum and minimum exist is not good enough. We
must be able to find them, and for that we need derivatives. In calculus you
talked a lot about tangent lines, but you probably did not accurately define a
tangent line from a geometric point of view. If it was defined at all, it might
have been defined by first defining the derivative in terms of limits and then
defining the tangent line tof at (x, f (x)) to be the line with slopef ′(x)
passing through(x, f (x)). Our approach was to offer a geometric definition
of a tangent line in Definition 33 and then, if a function has a tangent line
at a point, we offered a geometric definition of the derivative based on this
tangent line. In total, you saw three equivalent definitionsof the derivative,
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Conclusion

Definitions 34, 35, and 36. You then proved that the derivative is unique in
Theorem 22 and that every differentiable function is continuous in Theorem
26. As soon as you mastered derivatives in Calculus I, you started applying
them to find the maxima and minima of differentiable functions and you
always sought out points where the derivative was zero. In Theorem 27 we
proved what you used in your calculus course: the derivativeis zero at both
local maxima and local minima.

The capstone theorem of the first semester was the fact that every con-
tinuous function is Riemann integrable, Theorem 44, a result we extended
in a few ways. In fact, a function that is continuous on an interval except on
a subset of that interval with measure zero is still integrable. This explains
the introduction to measure theory. In the section on measure theory, we
proved theHeine-Borel Theorem, Theorem 106, which states that any open
cover of a closed interval has a finite subcover. We proved theFundamental
Theorem of Calculus, Theorems 48 and 49, theMean Value Theorem for
Integrals, Theorem 47,Rolle’s Theorem, Theorem 52, and theMean Value
Theorem for Derivatives, Theorem 54. We showed that uniform continu-
ity and continuity are equivalent on the interval, a result extending to any
compact domain. We extended our notion of convergence to sequences of
functions, defining pointwise convergence and uniform convergence. This
led us to powerful theorems such as 63 and 69, which state thatthe uniform
limit of continuous functions is continuous and that if the limit of a sequence
of functions is uniform, then we may interchange the integral and the limit.
We introduced uniform limits, Lipschitz functions, and series (Ratio Test,
Theorem 65) to prepare us for a nice application of analysis,the existence
and uniqueness of solutions to differential equations. While we showed this
only for two very elementary differential equations, the process used illus-
trates the underlying concept for provingPicard’s Existence Theorem.

Still, even with all the theorems we proved, we left out a few.Did you
miss them? What about the continuity of the product and composition of
continuous functions? What about the product, quotient, and composition
(chain) rules for derivatives? What about the fact that we can factor a con-
stant out of an integral? There are still many more such theorems to prove,
but once you have proven a handful of theorems about continuity, deriva-
tives, and integration, the rest fall in much the same way using the tech-
niques that you learned this semester.

As I revisited these ideas in graduate school, the way all these theorems
served as tools for other areas of mathematics, and the way they all were
extended and generalized to spaces other than the real line,was part of the
beauty of the subject. I hope that I have shared a part of the beauty of the
subject with you and that it serves as a springboard to highermathematics.
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